Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.omicsoft.com/fusionmap/
An efficient fusion aligner which aligns reads spanning fusion junctions directly to the genome without prior knowledge of potential fusion regions. It detects and characterizes fusion junctions at base-pair resolution. FusionMap can be applied to detect fusion junctions in both single- and paired-end dataset from either gDNA-Seq or RNA-Seq studies. FusionMap runs under both Windows and Linux (requiring MONO) environments. Although it can run on 32 bit machine, it is recommended to run on 64-bit machine with 8GB RAM or more. If you have an ArrayStudio License, you can run the fusion detection easily through its GUI.
Proper citation: FusionMap (RRID:SCR_005242) Copy
http://sourceforge.net/projects/cova/
A variant annotation and comparison tool for next-generation sequencing. It annotates the effects of variants on genes and compares those among multiple samples, which helps to pinpoint causal variation(s) relating to phenotype.
Proper citation: COVA (RRID:SCR_005175) Copy
http://variant.bioinfo.cipf.es/
Analysis tool that can report the functional properties of any variant in all the human, mouse or rat genes (and soon new model organisms will be added) and the corresponding neighborhoods. Also other non-coding extra-genic regions, such as miRNAs are included in the analysis. It not only reports the obvious functional effects in the coding regions but also analyzes noncoding SNVs situated both within the gene and in the neighborhood that could affect different regulatory motifs, splicing signals, and other structural elements. These include: Jaspar regulatory motifs, miRNA targets, splice sites, exonic splicing silencers, calculations of selective pressures on the particular polymorphic positions, etc. Software analysis pipelines used in the analysis of NGS data are highly modular, heterogeneous, and rapidly evolving. VARIANT can easily be incorporated into a NGS resequencing pipeline either as a CLI or invoked a webservice. It inputs data directly from the most widely used programs for SNV detection., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: VARIANT (RRID:SCR_005194) Copy
http://stothard.afns.ualberta.ca/downloads/NGS-SNP/
A collection of command-line scripts for providing rich annotations for SNPs identified by the sequencing of transcripts or whole genomes from organisms with reference sequences in Ensembl. Included among the annotations, several of which are not available from any existing SNP annotation tools, are the results of detailed comparisons with orthologous sequences. These comparisons allow, for example, SNPs to be sorted or filtered based on how drastically the SNP changes the score of a protein alignment. Other fields indicate the names of overlapping protein domains or features, and the conservation of both the SNP site and flanking regions. NCBI, Ensembl, and Uniprot IDs are provided for genes, transcripts, and proteins when applicable, along with Gene Ontology terms, a gene description, phenotypes linked to the gene, and an indication of whether the SNP is novel or known. A ?Model_Annotations? field provides several annotations obtained by transferring in silico the SNP to an orthologous gene, typically in a well-characterized species.
Proper citation: NGS-SNP (RRID:SCR_005182) Copy
https://www.har.mrc.ac.uk/about/mammalian-genetics-unit
It is now widely known that animals share many genes with humans and can suffer from the same diseases, for example diabetes or deafness. Investigating these diseases in animals can provide vital leads to understanding both their causes and ways to treat them in humans. This approach to medical research lies at the heart of work at the MRC Mammalian Genetics Unit (MGU) at Harwell in Oxfordshire. In 1995 the MRC Radiobiology Unit was reconstituted to form two new units, the Radiation and Genome Stability Unit and the MGU. These opened in January 1996, together with the UK Mouse Genome Centre which is now part of MGU, making MRC Harwell a unique campus for multi-disciplinary genetics research. Since MGU's Director Steve Brown took the reins in 1996, the unit has dramatically expanded its scientific scope and increased its personnel from 40 to over 100. It now has 13 research programs encompassing molecular genetics, genomics, genetic manipulation and data analysis at all levels, from single genes to the whole genome. With a combination of cutting-edge facilities and expertise unrivaled in Europe, MGU Harwell has become firmly established as one of the world's leading academic centres for mouse genetics.
Proper citation: MRC Mammalian Genetics Unit (RRID:SCR_005378) Copy
http://statgenpro.psychiatry.hku.hk/limx/kggseq/
A biological Knowledge-based mining platform for Genomic and Genetic studies using Sequence data. The software platform, constituted of bioinformatics and statistical genetics functions, makes use of valuable biologic resources and knowledge for sequencing-based genetic mapping of variants / genes responsible for human diseases / traits. It facilitates geneticists to fish for the genetic determinants of human diseases / traits in the big sea of DNA sequences. KGGSeq has paid attention to downstream analysis of genetic mapping. The framework was implemented to filter and prioritize genetic variants from whole exome sequencing data.
Proper citation: KGGSeq (RRID:SCR_005311) Copy
http://bioapps.sabanciuniv.edu/mugex/v02/
Service that automatically extracts mutation-gene pairs from MEDLINE abstracts for a given disease.
Proper citation: MuGeX (RRID:SCR_005306) Copy
http://llama.mshri.on.ca/synergizer/translate/
The Synergizer database is a growing repository of gene and protein identifier synonym relationships. This tool facilitates the conversion of identifiers from one naming scheme (a.k.a namespace) to another. The Synergizer is a service for translating between sets of biological identifiers. It can, for example, translate Ensembl Gene IDs to Entrez Gene IDs, or IPI IDs to HGNC gene symbols, and much more. Unlike some other tools for this purpose, The Synergizer is simple and easy to learn. The Synergizer works via a web interface (for users who are not programmers) or through a web service (for programmatic access).
Proper citation: Synergizer (RRID:SCR_005308) Copy
http://services.nbic.nl/copub/portal/
Text mining tool that detects co-occuring biomedical concepts in abstracts from the MedLine literature database. It allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs.
Proper citation: CoPub (RRID:SCR_005327) Copy
Database that unites independently created and maintained data collections of transcription factor and regulatory sequence annotation. The flexible PAZAR schema permits the representation of diverse information derived from experiments ranging from biochemical protein-DNA binding to cellular reporter gene assays. Data collections can be made available to the public, or restricted to specific system users. The data ''boutiques'' within the shopping-mall-inspired system facilitate the analysis of genomics data and the creation of predictive models of gene regulation., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PAZAR (RRID:SCR_005410) Copy
http://www.ncbi.nlm.nih.gov/gtr/
Central location for voluntary submission of genetic test information by providers including the test''s purpose, methodology, validity, evidence of the test''s usefulness, and laboratory contacts and credentials. GTR aims to advance the public health and research into the genetic basis of health and disease. GTR is accepting registration of clinical tests for Mendelian disorders, complex tests and arrays, and pharmacogenetic tests. These tests may include multiple methods and may include multiple major method categories such as biochemical, cytogenetic, and molecular tests. GTR is not currently accepting registration of tests for somatic disorders, research tests or direct-to-consumer tests.
Proper citation: Genetic Testing Registry (RRID:SCR_005565) Copy
http://www.gene-regulation.com/pub/databases.html#transpath
Database on eukaryotic transcription factors, their experimentally-proven binding sites, consensus binding sequences (positional weight matrices) and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. It can either be used as an encyclopedia, for both specific and general information on signal transduction, or can serve as a network analyzer. Cross-references to important sequence and signature databases such as EMBL/GenBank UniProt/Swiss-Prot InterPro or Ensembl EntrezGene RefSeq are provided. The database is equipped with the tools for data visualization and analysis. It has three modules: the first one is the data, which have been manually extracted, mostly from the primary literature; the second is PathwayBuilder, which provides several different types of network visualization and hence facilitates understanding; the third is ArrayAnalyzer, which is particularly suited to gene expression array interpretation, and is able to identify key molecules within signalling networks (potential drug targets). These key molecules could be responsible for the coordinated regulation of downstream events. Manual data extraction focuses on direct reactions between signalling molecules and the experimental evidence for them, including species of genes/proteins used in individual experiments, experimental systems, materials and methods. This combination of materials and methods is used in TRANSPATH to assign a quality value to each experimentally proven reaction, which reflects the probability that this reaction would happen under physiological conditions. Another important feature in TRANSPATH is the inclusion of transcription factor-gene relations, which are transferred from TRANSFAC, a database focused on transcription regulation and transcription factors. Since interactions between molecules are mainly direct, this allows a complete and stepwise pathway reconstruction from ligands to regulated genes.
Proper citation: TRANSPATH (RRID:SCR_005640) Copy
The Roth Laboratory is designing and interpreting large-scale experiments to understand pathway structure and its relationship to phenotype and human disease. Software for research focused on a specific research goal is available. Current experimental interests: * Exploiting parallel sequencing technology to phenotype all pairwise gene deletion combinations in S. cerevisiae, with initial application to genes involved in transcription. * Generation of S. cerevisiae strains carrying dozens of chosen targeted deletions, with initial application to delete all ABC transporters imparting multidrug resistance. * Targeted insertion of gene sets encoding entire human pathways into S. cerevisiae, with initial application to genes involved in drug metabolism. Current computational interests: * Systematic analysis of genetic interaction to reveal redundant systems and order of action in genetic pathways * Integrating large-scale studies - including phenotype, genetic epistasis, protein-protein and transcription-regulatory interactions and sequence patterns - to quantitatively assign function to genes and guide experimentation and disease association studies. * Alternative splicing and its relationship to protein interaction networks.
Proper citation: Roth Laboratory (RRID:SCR_005711) Copy
http://sourceforge.net/projects/netclassr/
An R package for network-based feature (gene) selection for biomarkers discovery via integrating biological information. The package adapts the following 5 algorithms for classifying and predicting gene expression data using prior knowledge: # average gene expression of pathway (aep); # pathway activities classification (PAC); # Hub network classification (hubc); # filter via top ranked genes (FrSVM); # network smoothed t-statistic (stSVM).
Proper citation: netClass (RRID:SCR_005672) Copy
http://dbbb.georgetown.edu/research/bioinformatics/
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016.
Proper citation: GUMC Department of Biostatistics Bioinformatics and Biomathematics - Liu Lab (RRID:SCR_005708) Copy
Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMANIA (RRID:SCR_005709) Copy
The research of the group concentrates on the molecular biology of Gram-positive bacteria, with Bacillus subtilis and Lactococcus lactis as the main model organisms. A number of important (human) pathogens are also investigated: Bacillus cereus, Streptococcus pneumoniae and Enterococcus faecalis. The nature of the research is both fundamental and application-oriented. Transcript- and protein profiling by high-throughput technologies such as DNA microarrays and proteomics tools are being used. The very large data sets generated are analyzed by employing existing and novel bioinformatics tools. Major lines of research are in the field of functional genomics of these organisms, using systems- and synthetic biology approaches.
Proper citation: MolGen (RRID:SCR_005700) Copy
http://ki.se/ki/jsp/polopoly.jsp?d=29354&a=31610&l=en
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. KI Biobank - Gallstone aims at investigating genetics of gallstone disease on Swedish Twins. Types of samples * EDTA whole blood * DNA * Plasma Number of sample donors: 82
Proper citation: KI Biobank (RRID:SCR_005664) Copy
http://www.nimh.nih.gov/educational-resources/brain-basics/brain-basics.shtml
Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, and ongoing research that helps us better understand and treat disorders. Mental disorders are common. You may have a friend, colleague, or relative with a mental disorder, or perhaps you have experienced one yourself at some point. Such disorders include depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder (ADHD), and many others. Some people who develop a mental illness may recover completely; others may have repeated episodes of illness with relatively stable periods in between. Still others live with symptoms of mental illness every day. They can be moderate, or serious and cause severe disability. Through research, we know that mental disorders are brain disorders. Evidence shows that they can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions of cells in the body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you to some of this science, such as: * How the brain develops * How genes and the environment affect the brain * The basic structure of the brain * How different parts of the brain communicate and work with each other * How changes in the brain can lead to mental disorders, such as depression.
Proper citation: Brain Basics (RRID:SCR_005606) Copy
http://www.arabidopsis.org/servlets/Search?type=keyword&action=new_search
TAIR Keyword Browser searches and browses for Gene Ontology, TAIR Anatomy, and TAIR Developmental stage terms, and allows you to view term details and relationships among terms. It includes links to genes, publications, microarray experiments and annotations associated with the term or any children terms. Platform: Online tool
Proper citation: TAIR Keyword Browser (RRID:SCR_005687) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.