Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Part of zebrafish genome project. ZGC project to produce cDNA libraries, clones and sequences to provide complete set of full-length (open reading frame) sequences and cDNA clones of expressed genes for zebrafish. All ZGC sequences are deposited in GenBank and clones can be purchased from distributors of IMAGE consortium. With conclusion of ZGC project in September 2008, GenBank records of ZGC sequences will be frozen, without further updates. Since definition of what constitutes full-length coding region for some of genes and transcripts for which we have ZGC clones will likely change in future, users planning to order ZGC clones will need to monitor for these changes. Users can make use of genome browsers and gene-specific databases, such as UCSC Genome browser, NCBI's Map Viewer, and Entrez Gene, to view relevant regions of genome (browsers) or gene-related information (Entrez Gene).
Proper citation: Zebrafish Gene Collection (RRID:SCR_007054) Copy
http://www.sanger.ac.uk/Projects/D_rerio/zmp/
Create knockout alleles in protein coding genes in the zebrafish genome, using a combination of whole exome enrichment and Illumina next generation sequencing, with the aim to cover them all. Each allele created is analyzed for morphological differences and published on the ZMP site. Transcript counting is performed on alleles with a morphological phenotype. Alleles generated are archived and can be requested from this site through the Zebrafish International Resource Center (ZIRC). You may register to receive updates on genes of interest, or browse a complete list, or search by Ensembl ID, gene name or human and mouse orthologue.
Proper citation: ZMP (RRID:SCR_006161) Copy
http://zfrhmaps.tch.harvard.edu/cemh/CoreB.htm
Zebrafish core facility which generates and maintains transgenic and mutant fish lines for hematology research. It also provides expertise and training in model production, study design, and fish production for research.
Proper citation: Boston Children's Hospital Center of Excellence in Molecular Hematology Zebrafish Core (RRID:SCR_015355) Copy
http://zfrhmaps.tch.harvard.edu/cemh/CoreC.htm
Core facility for basic and translational stem cell research. The core's areas of expertise include human pluripotent stem cell biology, cGMP cell manufacturing, reprogramming, genome editing, genotyping, laboratory automation, chemical screening, and imaging/image analysis.
Proper citation: Boston Children's Hospital Center of Excellence in Molecular Hematology Stem Cell Engineering and Analysis Core (RRID:SCR_015352) Copy
http://www.kidneycenter.pitt.edu/cores/model_organisms.html
Core that uses the yeast S. cerevisiae and the zebrafish D. rerio to dissect fundamental aspects of kidney development and protein structure and function.
Proper citation: Pittsburgh Center for Kidney Research Model Organisms (RRID:SCR_015288) Copy
http://www.norc.uab.edu/corefacilities/animalmodels
Core that provides specialized expertise in the use of animal models and instrumentation to facilitate animal research related to nutrition and obesity.
Proper citation: University of Alabama at Birmingham Nutrition and Obesity Research Center Animal Models Core (RRID:SCR_015466) Copy
http://www.zfishbook.org/NGP/journalcontent/SCORE/SCORE.html
Narrative resource describing a visual data analysis and collection approach that takes advantage of the cylindrical nature of the zebrafish allowing for an efficient and effective method for image capture called, Specimen in a Corrected Optical Rotational Enclosure (SCORE) Imaging. To achieve a non-distorted image, zebrafish were placed in a fluorinated ethylene propylene (FEP) tube with a surrounding, optically corrected imaging solution: water. By similarly matching the refractive index of the housing (FEP tubing) to that of the inner liquid and outer liquid (water), distortion was markedly reduced, producing a crisp imagable specimen that is able to be fully rotated 360 degrees. A similar procedure was established for fixed zebrafish embryos using convenient, readily available borosilicate capillaries surrounded by 75% glycerol. The method described could be applied to chemical genetic screening and other, related high-throughput methods within the fish community and among other scientific fields.
Proper citation: Zebrafish - SCORE Imaging: Specimen in a Corrected Optical Rotational Enclosure (RRID:SCR_001300) Copy
http://corefacilities.case.edu/animal.php
A set of core facilities of Case Western Reserve University School of Medicine which allows users to create and analyze in vivo animal models. The various facilities provide animal care, transgenic models, imaging, irradiation, and phenotyping for research concerning such topics as cancer, metabolic processes, and behavior. In vivo animals provided include mice, zebrafish, and rodents.
Proper citation: CWRU In Vivo Animal Facilities (RRID:SCR_014209) Copy
Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.
Proper citation: Ensembl (RRID:SCR_002344) Copy
Database of homeobox genes in humans, mice, chickens, frogs, zebrafishes, amphioxuses, fruitflies, beetles, honeybees, and nematodes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: HomeoDB (RRID:SCR_015492) Copy
Open collection of Transposable Element DNA sequence alignments, hidden Markov Models, consensus sequences, and genome annotations.Dfam 3.2 provides early access to uncurated, de novo generated families.
Proper citation: Dfam (RRID:SCR_021168) Copy
http://www.stanford.edu/~rnusse/pathways/targets.html
A list of target genes of Wnt/beta-catenin signaling. Suggestions for additions are welcome. Direct targets are defined as those with Tcf binding sites and demonstrating that these sites are important.
Proper citation: Target genes of Wnt/beta-catenin signaling (RRID:SCR_007022) Copy
http://www.uniprot.org/program/Chordata
Data set of manually annotated chordata-specific proteins as well as those that are widely conserved. The program keeps existing human entries up-to-date and broadens the manual annotation to other vertebrate species, especially model organisms, including great apes, cow, mouse, rat, chicken, zebrafish, as well as Xenopus laevis and Xenopus tropicalis. A draft of the complete human proteome is available in UniProtKB/Swiss-Prot and one of the current priorities of the Chordata protein annotation program is to improve the quality of human sequences provided. To this aim, they are updating sequences which show discrepancies with those predicted from the genome sequence. Dubious isoforms, sequences based on experimental artifacts and protein products derived from erroneous gene model predictions are also revisited. This work is in part done in collaboration with the Hinxton Sequence Forum (HSF), which allows active exchange between UniProt, HAVANA, Ensembl and HGNC groups, as well as with RefSeq database. UniProt is a member of the Consensus CDS project and thye are in the process of reviewing their records to support convergence towards a standard set of protein annotation. They also continuously update human entries with functional annotation, including novel structural, post-translational modification, interaction and enzymatic activity data. In order to identify candidates for re-annotation, they use, among others, information extraction tools such as the STRING database. In addition, they regularly add new sequence variants and maintain disease information. Indeed, this annotation program includes the Variation Annotation Program, the goal of which is to annotate all known human genetic diseases and disease-linked protein variants, as well as neutral polymorphisms.
Proper citation: UniProt Chordata protein annotation program (RRID:SCR_007071) Copy
https://scicrunch.org/scicrunch/data/source/nlx_154697-8/search?q=*
A data set of connectivity statements from BAMS, CoCoMac, BrainMaps, Connectome Wiki, the Hippocampal-Parahippocampal Table of Temporal-Lobe.com, and Avian Brain Circuitry Database. The data set lists which brain sites connectivity is to and from, the organism connectivity is mapped in, and journal references.
Proper citation: Integrated Nervous System Connectivity (RRID:SCR_006391) Copy
https://scicrunch.org/scicrunch/data/source/nlx_154697-7/search?q=*
Virtual database currently indexing interaction between genes and diseases from Online Mendelian Inheritance in Man (OMIM) and Comparative Toxicogenomics Database (CTD).
Proper citation: Integrated Gene-Disease Interaction (RRID:SCR_006173) Copy
An extensible and customizable gene annotation portal that emphasizes community extensibility and user customizability. It is a complete resource for learning about gene and protein function. Community extensibility reflects a belief that any BioGPS user should be able to add new content to BioGPS using the simple plugin interface, completely independently of the core developer team. User customizability recognizes that not all users are interested in the same set of gene annotation data, so the gene report layouts enable each user to define the information that is most relevant to them. Currently, BioGPS supports eight species: Human (Homo sapiens), Mouse (Mus musculus), Rat (Rattus norvegicus), Fruitfly (Drosophila melanogaster), Nematode (Caenorhabditis elegans), Zebrafish (Danio rerio), Thale-cress (Arabidopsis thaliana), Frog (Xenopus tropicalis), and Pig (Sus scrofa). BioGPS presents data in an ortholog-centric format, which allows users to display mouse plugins next to human ones. Our data for defining orthologs comes from NCBI's HomoloGene database.
Proper citation: BioGPS: The Gene Portal Hub (RRID:SCR_006433) Copy
http://www.genomicus.biologie.ens.fr/genomicus-72.01/cgi-bin/search.pl
A genome browser that enables users to navigate in genomes in several dimensions: linearly along chromosome axes, transversaly across different species, and chronologicaly along evolutionary time.
Proper citation: Genomicus (RRID:SCR_011791) Copy
https://omictools.com/ecgene-tool
Database of functional annotation for alternatively spliced genes. It uses a gene-modeling algorithm that combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. It contains genome, mRNA, and EST sequence data, as well as a genome browser application. Organisms included in the database are human, dog, chicken, fruit fly, mouse, rhesus, rat, worm, and zebrafish. Annotation is provided for the whole transcriptome, not just the alternatively spliced genes. Several viewers and applications are provided that are useful for the analysis of the transcript structure and gene expression. The summary viewer shows the gene summary and the essence of other annotation programs. The genome browser and the transcript viewer are available for comparing the gene structure of splice variants. Changes in the functional domains by alternative splicing can be seen at a glance in the transcript viewer. Two unique ways of analyzing gene expression is also provided. The SAGE tags deduced from the assembled transcripts are used to delineate quantitative expression patterns from SAGE libraries available publicly. The cDNA libraries of EST sequences in each cluster are used to infer qualitative expression patterns.
Proper citation: ECgene: Gene Modeling with Alternative Splicing (RRID:SCR_007634) Copy
A database of conserved sequence elements, identified by a systematic genomic sequence comparison between a set of human genes involved in the pathogenesis of genetic disorders and their murine counterparts. Human and mouse genomic sequences were compared by BLASTZ. Sequences longer than 100 and with identity better than 70 were selected as CSTs and imported into the database. CSTs are extensively annotated with respect to exon/intron structure and other biological parameters. CST counterparts in other species were identified by using BLAST to scan genomes from other species, and selecting on the basis of homology and co-linearity. The database can be accessed by gene, chromosomal location, graphic browser, DNA features, and coding regions.
Proper citation: Disease Genes Conserved Sequence Tags Database (RRID:SCR_000760) Copy
http://bodymap.genes.nig.ac.jp/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A taxonomical and anatomical database of latest cross species animal EST data, clustered by UniGene and inter connected by Inparanoid. Users can search by Unigene, RefSeq, or Entrez Gene ID, or search for Gene Name or Tissue type. Data is also sortable and viewable based on qualities of normal, Neoplastic, or other. The last data import appears to be from 2008
Proper citation: BodyMap-Xs (RRID:SCR_001147) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.