Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Portal for dataset discovery across a heterogeneous, distributed group of transcriptomics, genomics, proteomics and metabolomics data resources. These resources span eight repositories in three continents and six organisations, including both open and controlled access data resources.
Proper citation: Omics Discovery Index (RRID:SCR_010494) Copy
https://www2.mrc-lmb.cam.ac.uk/groups/murshudov/content/balbes/balbes_layout.html
Software system for solving protein structures using x-ray crystallographic data. Automatic molecular replacement pipeline for molecular replacement in CCP4. Integrates into one system all components necessary for solving crystal structure by Molecular Replacement. System is automated so that it needs no user intervention when running combination of jobs such as model searching, molecular replacement and refinement.
Proper citation: BALBES (RRID:SCR_018763) Copy
https://www.utsouthwestern.edu/labs/danuser/software/
Software package as quantitative image analysis software for measurement of microtubule dynamics. MATLAB software for tracking full dynamics of microtubules based on plusTIP marker live cell image sequences.
Proper citation: plusTipTracker (RRID:SCR_021890) Copy
http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.
Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy
http://function.princeton.edu/GOLEM/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented July 7, 2017. Welcome to the home of GOLEM: An interactive, graphical gene-ontology visualization, navigation,and analysis tool on the web. GOLEM is a useful tool which allows the viewer to navigate and explore a local portion of the Gene Ontology (GO) hierarchy. Users can also load annotations for various organisms into the ontology in order to search for particular genes, or to limit the display to show only GO terms relevant to a particular organism, or to quickly search for GO terms enriched in a set of query genes. GOLEM is implemented in Java, and is available both for use on the web as an applet, and for download as a JAR package. A brief tutorial on how to use GOLEM is available both online and in the instructions included in the program. We also have a list of links to libraries used to make GOLEM, as well as the various organizations that curate organism annotations to the ontology. GOLEM is available as a .jar package and a macintosh .app for use on- or off- line as a stand-alone package. You will need to have Java (v.1.5 or greater) installed on your system to run GOLEM. Source code (including Eclipse project files) are also available. GOLEM (Gene Ontology Local Exploration Map)is a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet.
Proper citation: GOLEM An interactive, graphical gene-ontology visualization, navigation, and analysis tool (RRID:SCR_003191) Copy
Database of known and predicted mammalian and eukaryotic protein-protein interactions, it is designed to be both a resource for the laboratory scientist to explore known and predicted protein-protein interactions, and to facilitate bioinformatics initiatives exploring protein interaction networks. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered predictions. It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. It contains 490,600 Source Interactions, 370,002 Predicted Interactions, for a total of 846,116 interactions, and continues to expand as new protein-protein interaction data becomes available.
Proper citation: I2D (RRID:SCR_002957) Copy
Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.
Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy
A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.
Proper citation: MouseNET (RRID:SCR_003357) Copy
http://rostlab.org/services/nlsdb/
A database of nuclear localization signals (NLSs) and of nuclear proteins targeted to the nucleus by NLS motifs. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using "in silico mutagenesis" this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. From this site you can: * Query NLSdb * Find out how to use NLSdb * Browse the entries in NLSdb * Find out if your protein has an NLS using PredictNLS * Predict subcellular localization of your protein using LOCtree
Proper citation: NLSdb: a database of nuclear localization signals (RRID:SCR_003273) Copy
http://www.emdataresource.org/
Portal for deposition and retrieval of cryo electron microscopy (3DEM) density maps, atomic models, and associated metadata. Global resource for 3 Dimensional Electron Microscopy structure data archiving and retrieval, news, events, software tools, data standards, validation methods.
Proper citation: EMDataResource.org (RRID:SCR_003207) Copy
http://www.broadinstitute.org/cancer/software/genepattern
A powerful genomic analysis platform that provides access to hundreds of tools for gene expression analysis, proteomics, SNP analysis, flow cytometry, RNA-seq analysis, and common data processing tasks. A web-based interface provides easy access to these tools and allows the creation of multi-step analysis pipelines that enable reproducible in silico research.
Proper citation: GenePattern (RRID:SCR_003201) Copy
http://www.cellimagelibrary.org/
Freely accessible, public repository of vetted and annotated microscopic images, videos, and animations of cells from a variety of organisms, showcasing cell architecture, intracellular functionalities, and both normal and abnormal processes. Explore by Cell Process, Cell Component, Cell Type or Organism. The Cell includes images acquired from historical and modern collections, publications, and by recruitment.
Proper citation: Cell Image Library (CIL) (RRID:SCR_003510) Copy
Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.
Proper citation: Reactome (RRID:SCR_003485) Copy
Database of scientific photos, illustrations, and videos made available by the National Institute of General Medical Sciences.
Proper citation: National Institute of General Medical Sciences Image Gallery (RRID:SCR_003480) Copy
miniTUBA is a web-based modeling system that allows clinical and biomedical researchers to perform complex medical/clinical inference and prediction using dynamic Bayesian network analysis with temporal datasets. The software allows users to choose different analysis parameters (e.g. Markov lags and prior topology), and continuously update their data and refine their results. miniTUBA can make temporal predictions to suggest interventions based on an automated learning process pipeline using all data provided. Preliminary tests using synthetic data and laboratory research data indicate that miniTUBA accurately identifies regulatory network structures from temporal data. miniTUBA represents in a network view possible influences that occur between time varying variables in your dataset. For these networks of influence, miniTUBA predicts time courses of disease progression or response to therapies. minTUBA offers a probabilistic framework that is suitable for medical inference in datasets that are noisy. It conducts simulations and learning processes for predictive outcomes. The DBN analysis conducted by miniTUBA describes from variables that you specify how multiple measures at different time points in various variables influence each other. The DBN analysis then finds the probability of the model that best fits the data. A DBN analysis runs every combination of all the data; it examines a large space of possible relationships between variables, including linear, non-linear, and multi-state relationships; and it creates chains of causation, suggesting a sequence of events required to produce a particular outcome. Such chains of causation networks - are difficult to extract using other machine learning techniques. DBN then scores the resulting networks and ranks them in terms of how much structured information they contain compared to all possible models of the data. Models that fit well have higher scores. Output of a miniTUBA analysis provides the ten top-scoring networks of interacting influences that may be predictive of both disease progression and the impact of clinical interventions and probability tables for interpreting results. The DBN analysis that miniTUBA provides is especially good for biomedical experiments or clinical studies in which you collect data different time intervals. Applications of miniTUBA to biomedical problems include analyses of biomarkers and clinical datasets and other cases described on the miniTUBA website. To run a DBN with miniTUBA, you can set a number of parameters and constrain results by modifying structural priors (i.e. forcing or forbidding certain connections so that direction of influence reflects actual biological relationships). You can specify how to group variables into bins for analysis (called discretizing) and set the DBN execution time. You can also set and re-set the time lag to use in the analysis between the start of an event and the observation of its effect, and you can select to analyze only particular subsets of variables.
Proper citation: miniTUBA (RRID:SCR_003447) Copy
https://github.com/vlink/marge
Software package that integrates genome wide genetic variation with epigenetic data to identify collaborative transcription factor pairs. Optimized to work with chromatin accessibility assays such as ATAC-seq or DNase I hypersensitivity, as well as transcription factor binding data collected by ChIP-seq. Used to identify combinations of cell type specific transcription factors while simultaneously interpreting functional effects of non-coding genetic variation.
Proper citation: Motif Mutation Analysis for Regulatory Genomic Elements (RRID:SCR_021902) Copy
http://sysbio.rnet.missouri.edu/3Drefine/
Interactive web server for efficient protein structure refinement with capability to perform web based statistical and visual analysis.
Proper citation: 3DRefine (RRID:SCR_021883) Copy
Database on transcriptional regulation in Escherichia coli K-12 containing knowledge manually curated from original scientific publications, complemented with high throughput datasets and comprehensive computational predictions. Graphic and text-integrated environment with friendly navigation where regulatory information is always at hand. They provide integrated views to understand as well as organized knowledge in computable form. Users may submit data to make it publicly available.
Proper citation: RegulonDB (RRID:SCR_003499) Copy
A free volume processing segmenting tool that combines a flexible manual interface with powerful image processing and segmentation algorithms. Users can explore and label image volumes using slice windows and 3D volume rendering.
Proper citation: Seg3D (RRID:SCR_002552) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.