Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 526 results
Snippet view Table view Download 526 Result(s)
Click the to add this resource to a Collection

http://science.education.nih.gov/home2.nsf/feature/index.htm

The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.

Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy   


  • RRID:SCR_006758

http://neuroade.christakou.org/

At neuroade, a Cognitive Neuroscience Laboratory, we study change in brain and behavior across multiple time-scales. Researchers in the lab combine a variety of methodologies to answer specific questions about typical and atypical behavior and development. We use functional magnetic resonance imaging (fMRI), peripheral psychophysiology (such as skin conductance responses), behavioral testing, genotyping analysis, and computational modeling. Most of our work takes place at the Centre for Integrative Neuroscience and Neurodynamics (CINN), and we all live in the Department of Psychology at the University of Reading. Our research is divided into several distinct yet highly interlinked themes, all converging in their application to understanding psychopathology -- summarised here in no particular order: * Decision-making and the Evaluation of Decision Outcomes * Dimensions of Impulsivity as a Foraging Strategy * Adolescent Development * Computational Modeling Probes of Individual Differences

Proper citation: neuroade (RRID:SCR_006758) Copy   


  • RRID:SCR_006750

http://www.aids.gov/podcast/podcast-gallery/

Podcasts from AIDS.gov, featuring information from the Federal government about HIV/AIDS prevention, testing, research, treatment, and using new media in response to HIV/AIDS. Categories include: Basic HIV information, New Media, Federal Programs and Policies, HIV/AIDS Awareness Days, and Real Stories.

Proper citation: AIDS.gov Podcast (RRID:SCR_006750) Copy   


http://scicrunch.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.

Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)

Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy   


  • RRID:SCR_006899

    This resource has 1+ mentions.

http://www.dkfz.de/en/mga/Groups/LIFEdb-Database.html

Database that integrates large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. LifeDB integrates data regarding full length cDNA clones and data on expression of encoded protein and their subcellular localization on mammalian cell line. LifeDB enables the scientific community to systematically search and select genes, proteins as well as cDNA of interest by specific database identifiers as well as gene name. It enables to visualize cDNA clone and subcellular location of proteins. It also links the results to external biological databases in order to provide a broader functional information. LifeDB also provides an annotation pipeline which facilitates an improved mapping of clones to known human reference transcripts from the RefSeq database and the Ensembl database. An advanced web interface enables the researchers to view the data in a more user friendly manner. Users can search using any one of the following search options available both in Search gene and cDNA clones and Search Sub-cellular locations of human proteins: By Keyword, By gene/transcript identifier, By plate name, By clone name, By cellular location. * The Search genes and cDNA clones results include: Gene Name, Ensemble ID, Genomic Region, Clone name, Plate name, Plate position, Classification class, Synonymous SNP''s, Non- synonymous SNP''s, Number of ambiguous positions, and Alignment with reference genes. * The Search sub-cellular locations of human proteins results include: Subcellular location, Gene Name, Ensemble ID, Clone name, True localization, Images, Start tag and End tag. Every result page has an option to download result data (excluding the microscopy images). On click of ''Download results as CSV-file'' link in the result page the user will be given a choice to open or save result data in form of a CSV (Comma Separated Values) file. Later the CSV file can be easily opened using Excel or OpenOffice.

Proper citation: LifeDB (RRID:SCR_006899) Copy   


  • RRID:SCR_007079

    This resource has 1+ mentions.

http://www.genoscope.cns.fr/externe/tetraodon/

The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.

Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy   


  • RRID:SCR_007073

    This resource has 1000+ mentions.

http://www.broadinstitute.org/

Biomedical and genomic research center located in Cambridge, Massachusetts, United States. Nonprofit research organization under the name Broad Institute Inc., and is partners with Massachusetts Institute of Technology, Harvard University, and the five Harvard teaching hospitals. Dedicated to advance understanding of biology and treatment of human disease to improve human health.

Proper citation: Broad Institute (RRID:SCR_007073) Copy   


http://www.chr7.org

Database containing the DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented; the most up to date collation of sequence, gene, and other annotations from all databases (eg. Celera published, NCBI, Ensembl, RIKEN, UCSC) as well as unpublished data. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. The objective of this project is to generate a comprehensive description of human chromosome 7 to facilitate biological discovery, disease gene research and medical genetic applications. There are over 360 disease-associated genes or loci on chromosome 7. A major challenge ahead will be to represent chromosome alterations, variants, and polymorphisms and their related phenotypes (or lack thereof), in an accessible way. In addition to being a primary data source, this site serves as a weighing station for testing community ideas and information to produce highly curated data to be submitted to other databases such as NCBI, Ensembl, and UCSC. Therefore, any useful data submitted will be curated and shown in this database. All Chromosome 7 genomic clones (cosmids, BACs, YACs) listed in GBrowser and in other data tables are freely distributed.

Proper citation: Chromosome 7 Annotation Project (RRID:SCR_007134) Copy   


http://www.visionnetwork.nei.nih.gov/

The National Eye Institute (NEI) created the VISION Public Information Network for the purpose of communicating with public information officers at NEI grantee institutions. The Network''s primary mission is to work with the NEI in disseminating research results to the national and local media. The Network also works to inform the public of the mission of the National Institutes of Health (NIH) to improve the health of America through medical research. The NEI is part of the NIH, U.S. Department of Health and Human Services (DHHS). General information portal for eye and vision related resources for the public. Sponsors: This resource is supported by the National Eye Institute.

Proper citation: Vision Public Information Network (RRID:SCR_007340) Copy   


  • RRID:SCR_007379

    This resource has 1+ mentions.

http://nsr.bioeng.washington.edu/

Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.

Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy   


https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page

A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.

Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy   


  • RRID:SCR_007427

    This resource has 1+ mentions.

http://www.aneurist.org/

Project focused on cerebral aneurysms and provides integrated decision support system to assess risk of aneurysm rupture in patients and to optimize their treatments. IT infrastructure has been developeded for management and processing of vast amount of heterogeneous data acquired during diagnosis.

Proper citation: aneurIST (RRID:SCR_007427) Copy   


  • RRID:SCR_007416

    This resource has 100+ mentions.

http://human.brain-map.org/static/brainexplorer

Multi modal atlas of human brain that integrates anatomic and genomic information, coupled with suite of visualization and mining tools to create open public resource for brain researchers and other scientists. Data include magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), histology and gene expression data derived from both microarray and in situ hybridization (ISH) approaches. Brain Explorer 2 is desktop software application for viewing human brain anatomy and gene expression data in 3D.

Proper citation: Allen Human Brain Atlas (RRID:SCR_007416) Copy   


  • RRID:SCR_007973

    This resource has 100+ mentions.

http://enhancer.lbl.gov/

Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.

Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy   


  • RRID:SCR_007907

    This resource has 500+ mentions.

http://vega.sanger.ac.uk/

Central repository for high quality frequently updated manual annotation of vertebrate finished genome sequence. Human, mouse and zebrafish are in the process of being completely annotated, whereas for other species the annotation is only of specific genomic regions of particular biological interest. The majority of the annotation is from the HAVANA group at the Welcome Trust Sanger Institute. Users can BLAST, search for specific text, export, and download data. Genomes and details of the projects for each species are available through the homepages for human mouse and zebrafish. The website is built upon code from the EnsEMBL (http://www.ensembl.org) project. Some Ensembl features are not available in Vega. From the users point of view perhaps the most significant of these is MartView. However due to their inclusion in Ensembl, Vega human and mouse data can be queried using Ensembl MartView. Vega contains annotation of the human MHC region in eight haplotypes, and the LRC region in three haplotypes. Vega also contains annotation on the Insulin Dependent Diabetes (IDD) regions on non-reference assemblies for mouse.

Proper citation: VEGA (RRID:SCR_007907) Copy   


http://mmil.ucsd.edu/

An interdisciplinary group of scientists and clinicians who study the human brain using a variety of imaging, recording, and computational techniques. Their primary goal is to bridge non-invasive imaging technologies to the underlying neurophysiology of brain neuronal circuits for a better understanding of healthy human brain function, and mechanisms of disruption of this function in diseases such as Alzheimer's, epilepsy and stroke. The other goal of the MMIL is to develop and apply advanced imaging techniques to understanding the human brain and its disorders. In order to ground these methodological developments in their underlying neurobiology, invasive studies in humans and animals involving optical and micro physiological measures are also performed. These methodologies are applied to understanding normal function in sleep, memory and language, development and aging, and diseases such as dementia, epilepsy and autism.

Proper citation: Multimodal Imaging Laboratory (RRID:SCR_008071) Copy   


http://genome.wustl.edu/projects/detail/human-gut-microbiome/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.

Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy   


http://www.atlas.or.kr/

Database of images on medical parasitology created to provide educational materials for medical students primarily, but professional workers in medical or paramedical fields may also refer to this site covering the significant parasites in the world. Each database of protozoans, nematodes, trematodes, cestodes and arthropods contains information on the morphology, life cycle, geographical distribution, symptoms, prevention, etc. Users who wish to contribute can send the editor unpublished images of human parasites (microscopical, clinical, radiological or epidemiological aspects of human parasitic infections) by mail or e-mail. Pathology specimens (slide, samples) are welcome too. The A.M.P. received the citation of reliable sources such as Parasitology today and The Lancet, and is now listed in the Internet Resources on Specific Infectious Diseases Topics of the Mandell, Douglas and Bennets Principles and Practice of Infectious Diseases Fifth Edition.
This website was established with a great contribution of the PROJECT COLLABORATORS and many contributors of The Korean Society for Parasitology.

Proper citation: Atlas of Medical Parasitology (RRID:SCR_008163) Copy   


  • RRID:SCR_008033

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html

In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.

Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X