Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 176 results
Snippet view Table view Download 176 Result(s)
Click the to add this resource to a Collection

https://datascience.uth.edu/medcis

NIH funded center to provide system for sharing multimodal epilepsy data for Sudden Unexpected Death in Epilepsy. Modality Epilepsy Data Capture and Integration System (MEDCIS) is cross cohort query interface for SUDEP (Sudden Unexpected Death in EPilepsy) research.

Proper citation: University of Texas Health Science at Houston Center for SUDEP Research (RRID:SCR_024700) Copy   


  • RRID:SCR_003086

    This resource has 1000+ mentions.

http://neuromab.ucdavis.edu/

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

Proper citation: NeuroMab (RRID:SCR_003086) Copy   


  • RRID:SCR_007276

    This resource has 10+ mentions.

http://senselab.med.yale.edu

The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.

Proper citation: SenseLab (RRID:SCR_007276) Copy   


https://www.bci2000.org/

BCI2000 is a general-purpose system for brain-computer interface (BCI) and adaptive neurotechnology research. It can also be used for data acquisition, stimulus presentation, and brain monitoring applications. The mission of the BCI2000 project is to facilitate research and applications in the areas described. Their vision is that BCI2000 will become a widely used software tool for diverse areas of real-time biosignal processing. In order to achieve this vision, BCI2000 system is available for free for non-profit research and educational purposes. BCI2000 supports a variety of data acquisition systems, brain signals, and study/feedback paradigms. During operation, BCI2000 stores data in a common format (BCI2000 native or GDF), along with all relevant event markers and information about system configuration. BCI2000 also includes several tools for data import/conversion (e.g., a routine to load BCI2000 data files directly into Matlab) and export facilities into ASCII. BCI2000 also facilitates interactions with other software. For example, Matlab scripts can be executed in real-time from within BCI2000, or BCI2000 filters can be compiled to execute as stand-alone programs. Furthermore, a simple network-based interface allows for interactions with external programs written in any programming language. For example, a robotic arm application that is external to BCI2000 may be controlled in real time based on brain signals processed by BCI2000, or BCI2000 may use and store along with brain signals behavioral-based inputs such as eye-tracker coordinates. Because it is based on a framework whose services can support any BCI implementation, the use of BCI2000 provides maximum benefit to comprehensive research programs that operate multiple BCI2000 installations to collect data for a variety of studies. The most important benefits of the system in such situations are: - A Proven Solution - Facilitates Operation of Research Programs - Facilitates Deployment in Multiple Sites - Cross-Platform and Cross-Compiler Compatibility - Open Resource Sponsors: BCI2000 development is sponsored by NIH/NIBIB R01 and NIH/NINDS U24 grants. Keywords: General, Purpose, Systems, Brain, Computer, Interface, Research, Application, Brain, Diverse, Educational, Laboratory, Software, Network, Signals, Behavioral, Eye, Tracker,

Proper citation: Brain Computer Interface 2000 Software Package (RRID:SCR_007346) Copy   


http://krasnow1.gmu.edu/cn3/L-Neuron/database/

A database of virtually generated anatomically plausible neurons for several morphological classes, including cerebellar Purkinje cells, hippocampal pyramidal and granule cells, and spinal cord motoneurons. It presently contains 542 cells. In the trade neurons collection the database contains an amaral cell archive, neuron morpho reconstructions, and mouse alpha motoneurons. Their collection of generated neurons include motoneurons, Purkinje cells, and hippocampal pyramidal cells.

Proper citation: Virtual NeuroMorphology Electronic Database (RRID:SCR_007118) Copy   


  • RRID:SCR_006760

    This resource has 1+ mentions.

http://www.ninds.nih.gov/news_and_events/proceedings/20101217-NEXT.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 26,2022. A unique clinical trial network open to studies of more than 400 neurological diseases, allowing investigators to more efficiently pursue new therapies based on scientific opportunity. The network has a centralized IRB serving 25 sites, which will allow trials to move faster, without the need to coordinate IRBs at each individual site. It is not necessary to be part of the NeuroNEXT infrastructure to propose and conduct a study within the network. The Network for Excellence in Neuroscience Clinical Trials, or NeuroNEXT, was created to conduct studies of treatments for neurological diseases through partnerships with academia, private foundations, and industry. The network is designed to expand the National Institute of Neurological Disorders and Stroke''s (NINDS) capability to test promising new therapies, increase the efficiency of clinical trials before embarking on larger studies, and respond quickly as new opportunities arise to test promising treatments for people with neurological disorders. The NeuroNEXT program aims to: * Provide a robust, standardized, and accessible infrastructure to facilitate rapid development and implementation of protocols in neurological disorders affecting adult and/or pediatric populations. The network includes multiple Clinical Sites, one Clinical Coordinating Center (CCC) and one Data Coordinating Center (DCC). * Support scientifically sound, possibly biomarker-informed, Phase II clinical trials that provide data for clear go/no-go decisions. * Energize and mobilize federal, industry, foundations and patient advocacy partners by leveraging existing relationships between NINDS and NeuroNEXT to organize high impact Phase II clinical trials for neurological disorders. * Expand the pool of experienced clinical investigators and research staff who are prepared to be leaders of multicenter clinical research trials. * Working with NeuroNEXT is a cooperative venture between NINDS, the NeuroNEXT network and the applicant.

Proper citation: NeuroNEXT (RRID:SCR_006760) Copy   


  • RRID:SCR_002569

    This resource has 1+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases

3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.

Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy   


  • RRID:SCR_002884

    This resource has 1+ mentions.

http://www.gensat.org/retina.jsp

Collection of images from cell type-specific protein expression in retina using BAC transgenic mice. Images from cell type-specific protein expression in retina using BAC transgenic mice from GENSAT project.

Proper citation: Retina Project (RRID:SCR_002884) Copy   


http://zebrafinch.brainarchitecture.org/

Atlas of high resolution Nissl stained digital images of the brain of the zebra finch, the mainstay of songbird research. The cytoarchitectural high resolution photographs and atlas presented here aim at facilitating electrode placement, connectional studies, and cytoarchitectonic analysis. This initial atlas is not in stereotaxic coordinate space. It is intended to complement the stereotaxic atlases of Akutegawa and Konishi, and that of Nixdorf and Bischof. (Akutagawa E. and Konishi M., stereotaxic atalas of the brain of zebra finch, unpublished. and Nixdorf-Bergweiler B. E. and Bischof H. J., A Stereotaxic Atlas of the Brain Of the Zebra Finch, Taeniopygia Guttata, http://www.ncbi.nlm.nih.gov.) The zebra finch has proven to be the most widely used model organism for the study of the neurological and behavioral development of birdsong. A unique strength of this research area is its integrative nature, encompassing field studies and ethologically grounded behavioral biology, as well as neurophysiological and molecular levels of analysis. The availability of dimensionally accurate and detailed atlases and photographs of the brain of male and female animals, as well as of the brain during development, can be expected to play an important role in this research program. Traditionally, atlases for the zebra finch brain have only been available in printed format, with the limitation of low image resolution of the cell stained sections. The advantages of a digital atlas over a traditional paper-based atlas are three-fold. * The digital atlas can be viewed at multiple resolutions. At low magnification, it provides an overview of brain sections and regions, while at higher magnification, it shows exquisite details of the cytoarchitectural structure. * It allows digital re-slicing of the brain. The original photographs of brain were taken in certain selected planes of section. However, the brains are seldom sliced in exactly the same plane in real experiments. Re-slicing provides a useful atlas in user-chosen planes, which are otherwise unavailable in the paper-based version. * It can be made available on the internet. High resolution histological datasets can be independently evaluated in light of new experimental anatomical, physiological and molecular studies.

Proper citation: Zebrafinch Brain Architecture Project (RRID:SCR_004277) Copy   


http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR

A calculator that calculates the prediction models for 6 month outcome after Traumatic Brain Injury. Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients. The sequential prediction models may be used as an aid to estimate 6 month outcome in patients with severe or moderate traumatic brain injury (TBI). However, the prediction rule can only complement, never replace, clinical judgment and can therefore be used only as a decision-support system.

Proper citation: IMPACT Prognostic Calculator (RRID:SCR_004730) Copy   


  • RRID:SCR_023041

    This resource has 1+ mentions.

https://github.com/lambdaloop/anipose

Software package for 3D pose estimation. Uses DeepLabCut for 2D tracking and uses triangulation methods to project pose estimations into three dimensions.Toolkit for robust markerless 3D pose estimation.

Proper citation: Anipose (RRID:SCR_023041) Copy   


http://www.nitrc.org/projects/ibsr

Data set of manually-guided expert segmentation results along with magnetic resonance brain image data. Its purpose is to encourage the development and evaluation of segmentation methods by providing raw test and image data, human expert segmentation results, and methods for comparing segmentation results. Please see the MediaWiki for more information. This repository is meant to contain standard test image data sets which will permit a standardized mechanism for evaluation of the sensitivity of a given analysis method to signal to noise ratio, contrast to noise ratio, shape complexity, degree of partial volume effect, etc. This capability is felt to be essential to further development in the field since many published algorithms tend to only operate successfully under a narrow range of conditions which may not extend to those experienced under the typical clinical imaging setting. This repository is also meant to describe and discuss methods for the comparison of results.

Proper citation: Internet Brain Segmentation Repository (RRID:SCR_001994) Copy   


http://kimlab.io/brain-map/atlas/

Website to visualize and share anatomical labels. Franklin and Paxinos (FP) based anatomical labels in Allen Common Coordinate Framework (CCF). Cell type specific transgenic mice and MRI atlas were used to adjust and further segment labels. New segmentations were created in dorsal striatum using cortico-striatal connectivity data. Anatomical labels were digitized based on Allen ontology, and web-interface was created for easy visualization. These labels provide resource to isolate and identify mouse brain anatomical structures. Open source data sharing will facilitate further refinement of anatomical labels and integration of data interpretation within single anatomical platform.

Proper citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_019267) Copy   


  • RRID:SCR_023293

    This resource has 100+ mentions.

https://cells.ucsc.edu/

Web based tool to visualize gene expression and metadata annotation distribution throughout single cell dataset or multiple datasets. Interactive viewer for single cell expression. You can click on and hover over cells to get meta information, search for genes to color on and click clusters to show cluster specific marker genes.

Proper citation: UCSC Cell Browser (RRID:SCR_023293) Copy   


http://senselab.med.yale.edu/odormapdb

OdorMapDB is designed to be a database to support the experimental analysis of the molecular and functional organization of the olfactory bulb and its basis for the perception of smell. It is primarily concerned with archiving, searching and analyzing maps of the olfactory bulb generated by different methods. The first aim is to facilitate comparison of activity patterns elicited by odor stimulation in the glomerular layer obtained by different methods in different species. It is further aimed at facilitating comparison of these maps with molecular maps of the projections of olfactory receptor neuron subsets to different glomeruli, especially for gene targeted animals and for antibody staining. The main maps archived here are based on original studies using 2-deoxyglucose and on current studies using high resolution fMRI in mouse and rat. Links are also provided to sites containing maps by other laboratories. OdorMapDB thus serves as a nodal point in a multilaboratory effort to construct consensus maps integrating data from different methodological approaches. OdorMapDB is integrated with two other databases in SenseLab: ORDB, a database of olfactory receptor genes and proteins, and OdorDB, a database of odor molecules that serve as ligands for the olfactory receptor proteins. The combined use of the three integrated databases allows the user to identify odor ligands that activate olfactory receptors that project to specific glomeruli that are involved in generating the odor activity maps.

Proper citation: Olfactory Bulb Odor Map DataBase (OdorMapDB) (RRID:SCR_007287) Copy   


  • RRID:SCR_008712

    This resource has 1+ mentions.

http://www.stanford.edu/group/exonarray/cgi-bin/plot_selector.pl

Transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes. Provides improved cell-type-specific markers for better understanding of neural development, function, and disease.

Proper citation: Exon Array Browser (RRID:SCR_008712) Copy   


  • RRID:SCR_003487

    This resource has 10+ mentions.

http://cng.gmu.edu:8080/Lm

A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.

Proper citation: L-Measure (RRID:SCR_003487) Copy   


http://national_databank.mclean.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.

Proper citation: National Brain Databank (RRID:SCR_003606) Copy   


  • RRID:SCR_006577

    This resource has 10+ mentions.

http://www.commondataelements.ninds.nih.gov

The purpose of the NINDS Common Data Elements (CDEs) Project is to standardize the collection of investigational data in order to facilitate comparison of results across studies and more effectively aggregate information into significant metadata results. The goal of the National Institute of Neurological Disorders and Stroke (NINDS) CDE Project specifically is to develop data standards for clinical research within the neurological community. Central to this Project is the creation of common definitions and data sets so that information (data) is consistently captured and recorded across studies. To harmonize data collected from clinical studies, the NINDS Office of Clinical Research is spearheading the effort to develop CDEs in neuroscience. This Web site outlines these data standards and provides accompanying tools to help investigators and research teams collect and record standardized clinical data. The Institute still encourages creativity and uniqueness by allowing investigators to independently identify and add their own critical variables. The CDEs have been identified through review of the documentation of numerous studies funded by NINDS, review of the literature and regulatory requirements, and review of other Institute''s common data efforts. Other data standards such as those of the Clinical Data Interchange Standards Consortium (CDISC), the Clinical Data Acquisition Standards Harmonization (CDASH) Initiative, ClinicalTrials.gov, the NINDS Genetics Repository, and the NIH Roadmap efforts have also been followed to ensure that the NINDS CDEs are comprehensive and as compatible as possible with those standards. CDEs now available: * General (CDEs that cross diseases) Updated Feb. 2011! * Congenital Muscular Dystrophy * Epilepsy (Updated Sept 2011) * Friedreich''s Ataxia * Parkinson''s Disease * Spinal Cord Injury * Stroke * Traumatic Brain Injury CDEs in development: * Amyotrophic Lateral Sclerosis (Public review Sept 15 through Nov 15) * Frontotemporal Dementia * Headache * Huntington''s Disease * Multiple Sclerosis * Neuromuscular Diseases ** Adult and pediatric working groups are being finalized and these groups will focus on: Duchenne Muscular Dystrophy, Facioscapulohumeral Muscular Dystrophy, Myasthenia Gravis, Myotonic Dystrophy, and Spinal Muscular Atrophy The following tools are available through this portal: * CDE Catalog - includes the universe of all CDEs. Users are able to search the full universe to isolate a subset of the CDEs (e.g., all stroke-specific CDEs, all pediatric epilepsy CDEs, etc.) and download details about those CDEs. * CRF Library - (a.k.a., Library of Case Report Form Modules and Guidelines) contains all the CRF Modules that have been created through the NINDS CDE Project as well as various guideline documents. Users are able to search the library to find CRF Modules and Guidelines of interest. * Form Builder - enables users to start the process of assembling a CRF or form by allowing them to choose the CDEs they would like to include on the form. This tool is intended to assist data managers and database developers to create data dictionaries for their study forms.

Proper citation: NINDS Common Data Elements (RRID:SCR_006577) Copy   


https://fitbir.nih.gov/

Platform for Traumatic Brain Injury relevant data. System was developed to share data across entire TBI research field and to facilitate collaboration between laboratories and interconnectivity between informatics platforms. FITBIR implements interagency Common Data Elements for TBI research and provides tools and resources to extend data dictionary. Established submission strategy to ensure high quality and to provide maximum benefit to investigators. Qualified researchers can request access to data stored in FITBIR and/or data stored at federated repositories.

Proper citation: Federal Interagency Traumatic Brain Injury Research Informatics System (RRID:SCR_006856) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X