Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_003179

    This resource has 1+ mentions.

http://epilepsy.uni-freiburg.de/database

A comprehensive database for human surface and intracranial EEG data that is suitable for a broad range of applications e.g. of time series analyses of brain activity. Currently, the EU database contains annotated EEG datasets from more than 200 patients with epilepsy, 50 of them with intracranial recordings with up to 122 channels. Each dataset provides EEG data for a continuous recording time of at least 96 hours (4 days) at a sample rate of up to 2500 Hz. Clinical patient information and MR imaging data supplement the EEG data. The total duration of EEG recordings included execeeds 30000 hours. The database is composed of different modalities: Binary files with EEG recording / MR imaging data and Relational database for supplementary meta data.

Proper citation: EPILEPSIE database (RRID:SCR_003179) Copy   


  • RRID:SCR_007999

http://pubanatomy.org

An integrated exploration of biomedical literature and data. An anatomy viewer can be accessed and searches of PubMed literature are visualized as to the anatomical regions that they effect. PubAnatomy takes advantage of the 25-micron voxel level mouse brain structure annotation generated by the Allen Brain Institute and integrates Allen Brain Atlas gene expression data, relationships between brain regions and diseases for more efficient exploration of Medline database and gene expression data.

Proper citation: PubAnatomy (RRID:SCR_007999) Copy   


http://www.ebi.ac.uk/asd/aedb/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 27, 2013. A manual generated database for alternative exons and their properties from numerous species - the data is gathered from literature where these exons have been experimentally verified. Most alternative exons are cassette exons and are expressed in more than two tissues. Of all exons whose expression was reported to be specific for a certain tissue, the majority were expressed in the brain. At the moment, AEdb products that are available are sequence (a database of alternative exons), function (a database of functions attributed to constitutive and alternative exon), regulatory sequence (a database of transcript regulatory motifs), minigenes (a table of minigenes and their associations to splicing events), and diseases (a table of diseases associated with splicing and their associations to AltSplice). Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. The continuation and upgrade of the ASD consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs.

Proper citation: Alternative Exon Database (RRID:SCR_008157) Copy   


https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 29,2025. Electroencephalogram (EEG) data recorded from invasive and scalp electrodes. The EEG database contains invasive EEG recordings of 21 patients suffering from medically intractable focal epilepsy. The data were recorded during an invasive pre-surgical epilepsy monitoring at the Epilepsy Center of the University Hospital of Freiburg, Germany. In eleven patients, the epileptic focus was located in neocortical brain structures, in eight patients in the hippocampus, and in two patients in both. In order to obtain a high signal-to-noise ratio, fewer artifacts, and to record directly from focal areas, intracranial grid-, strip-, and depth-electrodes were utilized. The EEG data were acquired using a Neurofile NT digital video EEG system with 128 channels, 256 Hz sampling rate, and a 16 bit analogue-to-digital converter. Notch or band pass filters have not been applied. For each of the patients, there are datasets called ictal and interictal, the former containing files with epileptic seizures and at least 50 min pre-ictal data. the latter containing approximately 24 hours of EEG-recordings without seizure activity. At least 24 h of continuous interictal recordings are available for 13 patients. For the remaining patients interictal invasive EEG data consisting of less than 24 h were joined together, to end up with at least 24 h per patient. An interdisciplinary project between: * Epilepsy Center, University Hospital Freiburg * Bernstein Center for Computational Neuroscience (BCCN), Freiburg * Freiburg Center for Data Analysis and Modeling (FDM).

Proper citation: Electroencephalogram Database: Prediction of Epileptic Seizures (RRID:SCR_008032) Copy   


  • RRID:SCR_008787

    This resource has 10+ mentions.

http://discovermagazine.com/

Popular science magazine which includes news and blogs on topics including Health & Medicine, Mind & Brain, Technology, Space, Human origins, Living World, Environment, and Physics & Math. NIF Indexes include: The Brain: DISCOVER blogger, columnist, and contributing editor Carl Zimmer''s monthly column will make your brain happy. Discover Interview: The magazine''s signature in-depth discussion with the leading lights of the world of science Vital Signs: A medical mystery, as written by the doctor involved.

Proper citation: Discover Magazine (RRID:SCR_008787) Copy   


  • RRID:SCR_008819

    This resource has 1+ mentions.

http://HIVBrainSeqDB.org

The HIV Brain Sequence Database (HIVBrainSeqDB) is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. For inclusion in the database, sequences must: (i) be deposited in Genbank; (ii) include some portion of the HIV env region; (iii) be clonal, amplified directly from tissue; and (iv) be sampled from the brain, or sampled from a patient for which the database already contains brain sequence. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i) brain, brainstem, and spinal cord; (ii) meninges, choroid plexus, and CSF; (iii) blood and lymphoid; and (iv) other (bone marrow, colon, lung, liver, etc). Currently, the database contains 2517 envelope sequences from 90 patients, obtained from 22 published studies. 1272 sequences are from brain; the remaining 1245 are from blood, lymph node, spleen, bone marrow, colon, lung and other non-brain tissues. The database interface utilizes a faceted interface, allowing real-time combination of multiple search parameters to assemble a meta-dataset, which can be downloaded for further analysis. This online resource will greatly facilitate analysis of the genetic aspects of HIV macrophage tropism, HIV compartmentalization and evolution within the brain and other tissue reservoirs, and the relationship of these findings to HIV-associated neurological disorders and other clinical consequences of HIV infection.

Proper citation: HIV Brain Sequence Database (RRID:SCR_008819) Copy   


http://www.molecularbrain.org/

MolecularBrain is an attempt to collect, collates, analyze and present the microarray derived gene expression data from various brain regions side by side. Transcription Profile of any gene in Mouse (online) and Human Brain (not yet) can be accessed as a histogram along with links to access various aspects of that gene. The expression levels were calculated from microarray data deposited at GEO (Gene expression omnibus). The molecular brain database could be searched using the built in search tool with the terms Entrez GeneID, gene symbol, synonym or description. Gene information along with their expression values can be also accessed from the alphabetical list of gene symbols on the footer. The protocol and GEO sample information is available.

Proper citation: Molecular Brain: Transcription Profiles of Mouse and Human Brains (RRID:SCR_008689) Copy   


http://neuromorphometrics.com/?page_id=23

Collection of neuroanatomically labeled MRI brain scans, created by neuroanatomical experts. Regions of interest include the sub-cortical structures (thalamus, caudate, putamen, hippocampus, etc), along with ventricles, brain stem, cerebellum, and gray and white matter and sub-divided cortex into parcellation units that are defined by gyral and sulcal landmarks.

Proper citation: Manually Labeled MRI Brain Scan Database (RRID:SCR_009604) Copy   


  • RRID:SCR_008830

    This resource has 1+ mentions.

http://www.functionalneurogenesis.com/blog/

A blog focusing on the function of adult neurogenesis in the dentate gyrus of the hippocampus, including discussion of scientific research papers, methods and protocols, and other trends or observations about the field.

Proper citation: Functional Neurogenesis (RRID:SCR_008830) Copy   


http://pingstudy.ucsd.edu/

A large multi-site pediatric MRI and genetics data resource to facilitate studies of the genomic landscape of the developing human brain. It includes information about the developing mental and emotional functions of the children to understand the genetic basis of individual differences in brain structure and connectivity, cognition, and personality. Investigators on the project are studying 1400 children between the ages of 3 and 20 years so that links between genetic variation and developing patterns of brain connectivity can be examined. Investigators interested in the effects of a particular gene will be able to search the database for any brain areas or connections between areas that differ as a function of variation in a particular gene, and also to determine if the genes appear to affect the course of brain development at some point during childhood. A data exploration tool has been created for mapping and analyzing MRI data sets collected for PING and related developmental studies. Approved investigators will be able to view raw image sets and derived 3D brain maps of MRI and DTI data, conduct hypothesis testing, and graph brain area measures as they change across the time course of development. PING Cores * Coordinating Core: Functions include project management, screening of participants and maintaining the database * Neuroimaging Core: applying a standardized high-resolution structural MRI protocol involving 3-D T1-weighted scans, a T2-weighted volume, and a set of diffusion-weighted scans with multiple b values and diffusion directions, scans to estimate MRI relaxation rates, and gradient echo EPI scans for resting state fMRI. Importantly, adaptive motion compensation, using ����??PROMO����??, a novel real-time motion correction algorithm will be used. Specific PING protocols for each scanner manufacturer: ** PING MRI Protocol - GE ** PING MRI Protocol - Philips ** PING MRI Protocol - Siemens * Assessment Core: Cognitive assessments for the PING project are conducted using the NIH Toolbox for Cognition. * Genomics Core: functions as a central repository for receipt of saliva samples collected for each study participant. Once received, samples are catalogued, maintained, and DNA is extracted using state-of-the-field laboratory techniques. Ultimately, genome-wide genotyping is performed on the extracted DNA using the Illumina Human660W-Quad BeadChip. PING involves 10 sites throughout the country including UCSD, University of Hawaii, Scripps Genomics, UCLA, UC Davis, Kennedy Krieger Institute/Johns Hopkins, Sacker Institute/Cornell University, University of Massachusetts, Massachusetts General Hospital/Harvard, and Yale. Families who may want to participate in the study, or others who want to know more about it, may email questions to ping (at) ucsd.edu.

Proper citation: Pediatric Imaging Neurocognition and Genetics (RRID:SCR_008953) Copy   


http://www.cma.mgh.harvard.edu/

A center dedicated to developing and applying morphometric methods to biomedical imaging data such as high-resolution MRI. The lab uses automated and semi-automated software such that MRI brain images are segmented into anatomical regions of interest. Projects in both basic and applied brain research include research on strokes and tumors; medical image processing research includes shape analysis of anatomical brain regions and measurement and analysis of brain volumes.

Proper citation: MGH Center for Morphometric Analysis (RRID:SCR_000885) Copy   


http://blog.wholebraincatalog.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 6,2023. The blog of the Whole Brain Catalog.

Proper citation: Whole Brain Catalog Blog (RRID:SCR_000582) Copy   


http://fcon_1000.projects.nitrc.org/indi/pro/nyu.html

Datasets including a collection of scans from 49 psychiatrically evaluated neurotypical adults, ranging in age from 6 to 55 years old, with age, gender and intelligence quotient (IQ) information provided. Future releases will include more comprehensive phenotypic information, and child and adolescent datasets, as well as individuals from clinical populations. The following data are released for every participant: * At least one 6-minute resting state fMRI scan (R-fMRI) * * One high-resolution T1-weighted mprage, defaced to protect patient confidentiality * Two 64-direction diffusion tensor imaging scans * Demographic information (age, gender) and IQ-measures (Verbal, Performance, and Composite; Weschler Abbreviated Scale of Intelligence - WASI) * Most participants have 2 R-fMRI scans, collected less than 1 hour apart in the same scanning session. Rest_1 is always collected first.

Proper citation: NYU Institute for Pediatric Neuroscience Sample (RRID:SCR_010458) Copy   


http://fcon_1000.projects.nitrc.org/indi/pro/VirginiaTech.html

Dataset including a T1 weighted anatomical image as well as two 10-minute resting state scans acquired during the same session from 25 psychiatrically screened healthy adults (community sample) ranging in age from 18 to 65 years old, with age, sex, education level, and ethnicity provided. Some subjects also returned several weeks after the first scan for a second scanning session. The number of days between scan sessions, for subjects that had two sessions, is indicated in the demographics spreadsheet. The study scanning protocol included: # 13 sec localizer # 4 minute 38 second T1 weighted anatomical # Subject given instructions for resting state scan #1 # 10 minute 4 second resting state scan #1 # Subject given instructions for resting state scan #2 # 10 minute 4 second resting state scan #2 Scanning was performed on one of three different 3T Siemens TIM TRIOs at the Human Neuroimaging Lab at Baylor College of Medicine in Houston, Texas. All scans were acquired using the standard Siemen''s TIM 12-channel head matrix. The resting state scans were acquired with a custom sequence that is a slight modification to the standard Siemen''s EPI sequence that supports real-time fMRI. Images were acquired slightly oblique to minimize dephasing in the orbito-frontal cortex. Detailed scanning parameters are included in separate .pdf files.

Proper citation: Virginia Tech Carilion Research Institute Sample (RRID:SCR_010459) Copy   


  • RRID:SCR_000504

http://www.brainmysteries.com

A blog featuring articles on the brain, consciousness, cognitive science, psychology and neurology. This resource is in Russian.

Proper citation: Brain Mysteries (RRID:SCR_000504) Copy   


  • RRID:SCR_014577

https://senselab.med.yale.edu/MicroCircuitDB/

A database for storing and efficiently retrieving realistic computational models of brain microcircuits and networks. The focus is on microcircuits that are based on experimentally demonstrated properties of neurons and their connectivity.

Proper citation: MicrocircuitDB (RRID:SCR_014577) Copy   


  • RRID:SCR_017477

    This resource has 1+ mentions.

https://wiki.helsinki.fi/display/twineng/Twinstudy

Twin panel consists of three nationwide samples of Finnish twin pairs. Major studies include nicotine dependence, eating disorders and brain imaging and alcohol use.

Proper citation: Finnish Twin Cohort Study (RRID:SCR_017477) Copy   


http://www.neuroskills.com/

A topical portal and providers of brain injury rehabilitation services. Resources * Pharmacology Guide * Glossary of Brain Injury Terms * Brain Injury Research Articles * Common Brain Injury Assessment Tools / Rating Scale * Certified Continuing Education Courses * Links to Resource Sites

Proper citation: Centre for Neuro Skills (RRID:SCR_006106) Copy   


http://mitraweb1.cshl.edu:8080/BrainArchitecture/pages/publications.faces

Preliminary database of neuroanatomical connectivity reports specifically for the human brain, which have been manually curated. It includes details (based on manual literature curation) of tract tracing or related connectivity studies conducted in human brain tissue. This database and user interface will be expanded and improved in the near future.

Proper citation: Human Brain Connectivity Database (RRID:SCR_001594) Copy   


  • RRID:SCR_001592

    This resource has 10+ mentions.

http://incf.org/programs/atlasing/projects/waxholm-space

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 1st, 2023. Coordinate based reference space for the mapping and registration of neuroanatomical data. Users can download image volumes representing the canonical Waxholm Space (WHS) adult C57BL/6J mouse brain, which include T1-, T2*-, and T2-Weighted MR volumes (generated at the Duke Center for In-Vivo Microscopy), Nissl-stained optical histology (acquired at Drexel University), and a volume of labels. All volumes are represented at 21.5μ isotropic resolution. Datasets are provided as gzipped NIFTI files.

Proper citation: Waxholm Space (RRID:SCR_001592) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X