Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26,2019. In October 2016, T1DBase has merged with its sister site ImmunoBase (https://immunobase.org). Documented on March 2020, ImmunoBase ownership has been transferred to Open Targets (https://www.opentargets.org). Results for all studies can be explored using Open Targets Genetics (https://genetics.opentargets.org). Database focused on genetics and genomics of type 1 diabetes susceptibility providing a curated and integrated set of datasets and tools, across multiple species, to support and promote research in this area. The current data scope includes annotated genomic sequences for suspected T1D susceptibility regions; genetic data; microarray data; and global datasets, generally from the literature, that are useful for genetics and systems biology studies. The site also includes software tools for analyzing the data.
Proper citation: T1DBase (RRID:SCR_007959) Copy
http://www.jneurosci.org/supplemental/18/12/4570/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 29, 2013. Supplemental data for the paper Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice, by Vytautas P. Bindokas, Chong C. Lee, William F. Colmers, and Richard J. Miller that appears in the Journal of Neuroscience June 15, 1998. You can view digital movies of changes in fluorescence intensity by clicking on the title of interest.
Proper citation: Hippocampal Slice Wave Animations (RRID:SCR_008372) Copy
http://www.broad.mit.edu/mpg/grail/
A tool to examine relationships between genes in different disease associated loci. Given several genomic regions or SNPs associated with a particular phenotype or disease, GRAIL looks for similarities in the published scientific text among the associated genes. As input, users can upload either (1) SNPs that have emerged from a genome-wide association study or (2) genomic regions that have emerged from a linkage scan or are associated common or rare copy number variants. SNPs should be listed according to their rs#''s and must be listed in HapMap. Genomic Regions are specified by a user-defined identifier, the chromosome that it is located on, and the start and end base-pair positions for the region. Grail can take two sets of inputs - Query regions and Seed regions. Seed regions are definitely associated SNPs or genomic regions, and Query regions are those regions that the user is attempting to evaluate agains them. In many applications the two sets are identical. Based on textual relationships between genes, GRAIL assigns a p-value to each region suggesting its degree of functional connectivity, and picks the best candidate gene. GRAIL is developed by Soumya Raychaudhuri in the labs of David Altshuler and Mark Daly at the Center for Human Genetic Research of Massachusetts General Hospital and Harvard Medical School, and the Broad Institute. GRAIL is described in manuscript, currently in preparation.
Proper citation: Gene Relationships Across Implicated Loci (RRID:SCR_008537) Copy
Center mission is to advance medical and biological research by providing the scientific community with standardized, high quality metabolic and physiologic phenotyping services for mouse models of diabetes, diabetic complications, obesity and related disorders.
Proper citation: National Mouse Metabolic Phenotyping Centers (RRID:SCR_008997) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on December 5, 2022. Endoscopic Reporting Software, aggregated and individual research data and tailor-made services aimed to advance the overall practice of endoscopy. It was developed to study outcomes of gastrointestinal (GI) endoscopic procedures in real life settings, using data obtained from the CORI Endoscopic Reporting Software or from other endoscopic reporting software. Practice sites include hospitals, ambulatory care centers, private practices, universities, and Veteran''''s hospitals (VA''''s). The CORI v4 Endoscopic Reporting Software is a specialty Electronic Health Record used to document endoscopic procedures and provide reporting services to your practice. Data from participating providers is also sent to a central data repository to become part of the National Endoscopic Database (NED), which now contains data from over 2.7 million GI procedures. The CORI v4 Endoscopic Reporting Software offers significant benefits for participating practices, providers and patients, as well as for everyone who benefits from CORI''''s research efforts. You may actively participate in research with CORI. If you have ideas for research using the NED, their research team can help you evaluate those ideas, collect and analyze the data. In addition, you may choose to participate in one of the prospective research projects conducted by CORI research staff.
Proper citation: Clinical Outcomes Research Initiative (RRID:SCR_009010) Copy
http://genespeed.ccf.org/home/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.
Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.
Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy
http://www.mybiosoftware.com/population-genetics/332
A tool for SNP Search and downloading with local management. It also offers flanking sequence downloading and automatic SNP filtering. It requires Windows and .NET Framework.
Proper citation: SNPHunter (RRID:SCR_002968) Copy
http://www2.niddk.nih.gov/Research/Resources/ObesityResources.htm
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 23, 2017. This website contains resources for obesity researchers including: Obesity Databases, Registries and Information; Obesity Multicenter Clinical Research; Obesity Basic Research Networks; Obesity Reagents; Obesity Services; Obesity Standardization Programs; Obesity Tissues, Cells, Animals; Obesity Useful Tools.
Proper citation: NIDDK- National Institute of Diabetes and Digestive and Kidney Diseases Obesity Resources (RRID:SCR_003074) Copy
ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.
Proper citation: ToppGene Suite (RRID:SCR_005726) Copy
http://www.autoimmunitycenters.org/
Nine centers that conduct clinical trials and basic research on new immune-based therapies for autoimmune diseases. This program enhances interactions between scientists and clinicians in order to accelerate the translation of research findings into medical applications. By promoting better coordination and communication, and enabling limited resources to be pooled, ACEs is one of NIAID''''s primary vehicles for both expanding our knowledge and improving our ability to effectively prevent and treat autoimmune diseases. This coordinated approach incorporates key recommendations of the NIH Autoimmune Diseases Research Plan and will ensure progress in identifying new and highly effective therapies for autoimmune diseases. ACEs is advancing the search for effective treatments through: * Diverse Autoimmunity Expertise Medical researchers at ACEs include rheumatologists, neurologists, gastroenterologists, and endocrinologists who are among the elite in their respective fields. * Strong Mechanistic Foundation ACEs augment each clinical trial with extensive basic studies designed to enhance understanding of the mechanisms responsible for tolerance initiation, maintenance, or loss, including the role of cytokines, regulatory T cells, and accessory cells, to name a few. * Streamlined Patient Recruitment The cooperative nature of ACEs helps scientists recruit patients from distinct geographical areas. The rigorous clinical and basic science approach of ACEs helps maintain a high level of treatment and analysis, enabling informative comparisons between patient groups.
Proper citation: Autoimmunity Centers of Excellence (RRID:SCR_006510) Copy
https://repository.niddk.nih.gov/home/
NIDDK Central Repositories are two separate contract funded components that work together to store data and samples from significant, NIDDK funded studies. First component is Biorepository that gathers, stores, and distributes biological samples from studies. Biorepository works with investigators in new and ongoing studies as realtime storage facility for archival samples.Second component is Data Repository that gathers, stores and distributes incremental or finished datasets from NIDDK funded studies Data Repository helps active data coordinating centers prepare databases and incremental datasets for archiving and for carrying out restricted queries of stored databases. Data Repository serves as Data Coordinating Center and website manager for NIDDK Central Repositories website.
Proper citation: NIDDK Central Repository (RRID:SCR_006542) Copy
http://www.nkdep.nih.gov/lab-evaluation/gfr-calculators.shtml
Glomerular Filtration Rate (GFR) calculators to estimate kidney function for adults (MDRD GFR Calculator) and children (Schwartz GFR Calculator). In adults, the recommended equation for estimating glomerular filtration rate (GFR) from serum creatinine is the Modification of Diet in Renal Disease (MDRD) Study equation. The IDMS-traceable version of the MDRD Study equation is used. Currently the best equation for estimating glomerular filtration rate (GFR) from serum creatinine in children is the Bedside Schwartz equation for use with creatinine methods with calibration traceable to IDMS. Using the original Schwartz equation with a creatinine value from a method with calibration traceable to IDMS will overestimate GFR.
Proper citation: Glomerular Filtration Rate Calculators (RRID:SCR_006443) Copy
http://www.nkdep.nih.gov/lab-evaluation/gfr/creatinine-standardization.shtml
Standard specification to reduce inter-laboratory variation in creatinine assay calibration and therefore enable more accurate estimates of glomerular filtration rate (eGFR). Created by NKDEP''''s Laboratory Working Group in collaboration with the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) and the European Communities Confederation of Clinical Chemistry (now called the European Federation of Clinical Chemistry and Laboratory Medicine), the effort is part of a larger NKDEP initiative to help health care providers better identify and treat chronic kidney disease in order to prevent or delay kidney failure and improve patient outcomes. Recommendations are intended for the USA and other countries or regions that have largely completed standardization of creatinine calibration to be traceable to an isotope dilution mass spectrometry (IDMS) reference measurement procedure. The program''''s focus is to facilitate the sharing of information to assist in vitro diagnostic manufacturers, clinical laboratories, and others in the laboratory community with calibrating their serum creatinine measurement procedures to be traceable to isotope dilution mass spectrometry (IDMS). The program also supports manufacturers'''' efforts to encourage their customers in the laboratory to coordinate use of standardized creatinine methods with implementation of a revised GFR estimating equation appropriate for use with standardized creatinine methods. Communication resources and other information for various segments of the laboratory community are available in the Creatinine Standardization Recommendations section of the website. Also available is a protocol for calibrating creatinine measurements using whole blood devices. The National Institute for Standards and Technology (NIST) released a standard reference material (SRM 967 Creatinine in Frozen Human Serum) for use in establishing calibrations for routine creatinine measurement procedures. SRM 967 was validated to be commutable with native serum samples for many routine creatinine procedures and is useful to establish or verify traceability to an IDMS reference measurement procedure. Establishing calibrations for serum creatinine methods using SRM 967 not only provides a mechanism for ensuring more accurate measurement of serum creatinine, but also enables more accurate estimates of GFR. For clinical laboratories interested in independently checking the calibration supplied by their creatinine reagent suppliers/manufacturers, periodic measurement of NIST SRM 967 should be considered for inclusion in the lab''''s internal quality assurance program. To learn more about SRM 967, including how to purchase it, visit the NIST website, https://www-s.nist.gov/srmors/quickSearch.cfm
Proper citation: Creatinine Standardization Program (RRID:SCR_006441) Copy
http://ubbmc.buffalo.edu/research/ibsos.php
Multi-center placebo-controlled randomized clinical trial to assess the short-term and long-term efficacy of cognitive behavior therapy (CBT) for irritable bowel syndrome (IBS) using two treatment delivery systems: self administered CBT and therapist administered CBT. Long term project goals are to develop an effective self-administered behavioral treatment program that can enhance the quality of patient care, improve clinical outcomes, and decrease the economic and personal costs of one of the most prevalent and intractable gastrointestinal disorders.
Proper citation: Irritable Bowel Syndrome Outcome Study (RRID:SCR_001504) Copy
https://www.clinicaltrials.gov/study/NCT00064753
Multi-center, randomized, double blind controlled clinical trial to determine whether treatment with a standard multivitamin augmented with high doses of folic acid, vitamin B6 and vitamin B12 reduces the rate of cardiovascular disease outcomes in renal transplant recipients relative to participants receiving a similar multivitamin that contains no folic acid. This study hopes to show that by reducing the level of homocysteine in the body, the risk of heart disease is also reduced among kidney transplant patients.
Proper citation: Folic Acid for Vascular Outcome Reduction in Transplantation (RRID:SCR_001505) Copy
Multicenter observational study designed to identify genetic determinants of diabetic nephropathy. It is conducted in eleven U.S. clinical centers and a coordinating center, and with four ethnic groups (European Americans, African Americans, Mexican Americans, and American Indians). Two strategies are used to localize susceptibility genes: a family-based linkage study and a case-control study using mapping by admixture linkage disequilibrium (MALD). In the family-based study, probands with diabetic nephropathy are recruited with their parents and selected siblings. Linkage analyses will be conducted to identify chromosomal regions containing genes that influence the development of diabetic nephropathy or related quantitative traits such as serum creatinine concentration, urinary albumin excretion, and plasma glucose concentrations. Regions showing evidence of linkage will be examined further with both genetic linkage and association studies to identify genes that influence diabetic nephropathy or related traits. Two types of MALD studies are being done. One is a case-control study of unrelated individuals of Mexican American heritage in which both cases and controls have diabetes, but only the case has nephropathy. The other is a case-control study of African American patients with nephropathy (cases) and their spouses (controls) unaffected by diabetes and nephropathy; offspring are genotyped when available to provide haplotype data. The specific goals of this program: * Delineate genomic regions associated with the development and progression of renal disease(s) * Evaluate whether there is a genetic link between diabetic nephropathy and diabetic retinopathy * Improve outcomes * Provide protection for people at risk and slow the progression of renal disease * Help establish a resource for genetic studies of kidney disease and diabetic complications by creating a repository of genetic samples and a database * Encourage studies of the genetics of progressive renal disease
Proper citation: Family Investigation of Nephropathy of Diabetes (RRID:SCR_001525) Copy
https://clinicaltrials.gov/study/NCT01885559
Consortium established to design and implement clinical trials of treatments that might slow the progressive loss of renal function in Polycystic Kidney Disease (PKD). Two multicenter randomized, double-blind, placebo controlled clinical trials are running concurrently to study the efficacy of renin-angiotensin-aldosterone system blockade on the progression of cystic disease (kidney volume) and on the decline in renal function in autosomal dominant polycystic kidney disease (ADPKD). Study A is to study whether intensive ACE-I/ARB blockade decrease the progression of cystic disease compared to ACE-I monotherapy patients with early disease, relatively preserved renal function, and high-normal BP or hypertension. Study B is to study whether intensive ACE-I/ARB blockade as compared to ACE-I monotherapy slow the decline in kidney function, end-stage of renal disease, or death in the setting of standard blood pressure control in hypertensive patients with moderately advanced disease.
Proper citation: HALT PKD (RRID:SCR_001529) Copy
Network of centers to conduct studies of islet transplantation in patients with type 1 diabetes to improve the safety and long-term success of methods for transplanting islets. It is the aim of this trial to improve methods of isolating islets, to improve techniques for the administering those transplanted islets; and to develop approaches to minimize the toxic effects of immunosuppressive drugs required for transplantation.
Proper citation: Clinical Islet Transplantation Study (RRID:SCR_001515) Copy
https://sites.cscc.unc.edu/cscc/projects/RIVUR%20
Multicenter, randomized, double-blind, placebo-controlled trial is designed to determine whether daily antimicrobial prophylaxis is superior to placebo in preventing recurrence of urinary tract infection (UTI) in children with vesicoureteral reflux (VUR). The basic eligibility criteria are: (1) age at randomization of at least 2 months, but less than 6 years, (2) a diagnosed first febrile or symptomatic UTI within 42 days prior to randomization that was appropriately treated, and (3) presence of Grade I-IV VUR based on voiding cystourethrogram (VCUG). Patients will be randomly assigned to treatment for 2 years with daily antimicrobial prophylaxis (trimethoprim-sulfamethoxazole) or placebo. The study is designed to recruit 600 children (approximately 300 in each treatment group) over an 18-24 month period. The primary endpoint is recurrence of UTI. In addition, patients will be evaluated for secondary endpoints related to renal scarring and antimicrobial resistance. Scarring will be determined based on renal scintigraphy by 99mTc dimercaptosuccinic (DMSA) scan. Quality of life, compliance, safety parameters, utilization of health resources, and change in VUR will be assessed periodically throughout the study.
Proper citation: RiVuR (RRID:SCR_001539) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.