Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 22 showing 421 ~ 440 out of 1,660 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_008132

    This resource has 100+ mentions.

https://www.ncbi.nlm.nih.gov/genbank/dbest/

Database as a division of GenBank that contains sequence data and other information on single-pass cDNA sequences, or Expressed Sequence Tags, from a number of organisms.

Proper citation: dbEST (RRID:SCR_008132) Copy   


  • RRID:SCR_008104

    This resource has 10+ mentions.

http://www.baderlab.org/Software/ActiveDriver

A statistical method for interpreting variations in protein sequence (e.g. coding SNPs in the population, SNVs in cancer genomes) in the context of protein post-translational signaling modifications.

Proper citation: ActiveDriver (RRID:SCR_008104) Copy   


http://griffin.cbrc.jp/

Griffin (G-protein-receptor interacting feature finding instrument) is a high-throughput system to predict GPCR - G-protein coupling selectively with the input of GPCR sequence and ligand molecular weight. This system consists of two parts: 1) HMM section using family specific multiple alignment of GPCRs, 2) SVM section using physico-chemical feature vectors in GPCR sequence. G-protein coupled receptors (GPCR), which is composed of seven transmembrane helices, play a role as interface of signal transduction. The external stimulation for GPCR, induce the coupling with G-protein (Gi/o, Gq/11, Gs, G12/13) followed by different kinds of signal transduction to inner cell. About half of distributed drugs are intending to control this GPCR - G-protein binding system, and therefore this system is important research target for the development of effective drug. For this purpose, it is necessary to monitor, effectively and comprehensively, of the activation of G-protein by identifying ligand combined with GPCR. Since, at present, it is difficult to construct such biochemical experiment system, if the answers for experimental results can be prepared beforehand by using bioinformatics techniques, large progress is brought to G-protein related drug design. Previous works for predicting GPCR-G protein coupling selectivity are using sequence pattern search, statistical models, and HMM representations showed high sensitivity of predictions. However, there are still no works that can predict with both high sensitivity and specificity. In this work we extracted comprehensively the physico-chemical parameters of each part of ligand, GPCR and G-protein, and choose the parameters which have strong correlation with the coupling selectivity of G-protein. These parameters were put as a feature vector, used for GPCR classification based on SVM.

Proper citation: G protein receptor interaction feature finding instrument (RRID:SCR_008343) Copy   


  • RRID:SCR_009212

https://CRAN.R-project.org/package=gma

Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.

Proper citation: GMA (RRID:SCR_009212) Copy   


  • RRID:SCR_008918

    This resource has 10+ mentions.

http://clipserve.clip.ubc.ca/topfind

An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data

Proper citation: TopFIND (RRID:SCR_008918) Copy   


  • RRID:SCR_008870

    This resource has 100+ mentions.

http://go.princeton.edu/cgi-bin/GOTermFinder

The Generic GO Term Finder finds the significant GO terms shared among a list of genes from an organism, displaying the results in a table and as a graph (showing the terms and their ancestry). The user may optionally provide background information or a custom gene association file or filter evidence codes. This tool is capable of batch processing multiple queries at once. GO::TermFinder comprises a set of object-oriented Perl modules GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script. This implementation, developed at the Lewis-Sigler Institute at Princeton, depends on the GO-TermFinder software written by Gavin Sherlock and Shuai Weng at Stanford University and the GO:View module written by Shuai Weng. It is made publicly available through the GMOD project. The full source code and documentation for GO:TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Finder (RRID:SCR_008870) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


  • RRID:SCR_008966

    This resource has 50+ mentions.

http://hymenopteragenome.org/beebase/

Gene sequences and genomes of Bombus terrestris, Bombus impatiens, Apis mellifera and three of its pathogens, that are discoverable and analyzed via genome browsers, blast search, and apollo annotation tool. The genomes of two additional species, Apis dorsata and A. florea are currently under analysis and will soon be incorporated.BeeBase is an archive and will not be updated. The most up-to-date bee genome data is now available through the navigation bar on the HGD Home page.

Proper citation: BeeBase (RRID:SCR_008966) Copy   


  • RRID:SCR_009375

    This resource has 1+ mentions.

http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/

Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)

Proper citation: R/QTLBIM (RRID:SCR_009375) Copy   


  • RRID:SCR_003081

    This resource has 1000+ mentions.

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi

A web interface to the Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3.

Proper citation: Primer3Plus (RRID:SCR_003081) Copy   


  • RRID:SCR_003041

    This resource has 10+ mentions.

http://bibiserv.techfak.uni-bielefeld.de/dialign/

Tool for multiple sequence alignment using various sources of external information that is particularly useful to detect local homologies in sequences with low overall similarity. While standard alignment methods rely on comparing single residues and imposing gap penalties, DIALIGN constructs pairwise and multiple alignments by comparing entire segments of the sequences. No gap penalty is used. This approach can be used for both global and local alignment, but it is particularly successful in situations where sequences share only local homologies. Several versions of DIALIGN are available online at GOBICS, http://dialign.gobics.de/

Proper citation: DIALIGN (RRID:SCR_003041) Copy   


  • RRID:SCR_003133

    This resource has 10+ mentions.

https://rostlab.org/owiki/index.php/PredictNLS

Software automated tool for analysis and determination of Nuclear Localization Signals (NLS). Predicts that your protein is nuclear or finds out whether your potential NLS is found in our database. The program also compiles statistics on the number of nuclear/non-nuclear proteins in which your potential NLS is found. Finally, proteins with similar NLS motifs are reported, and the experimental paper describing the particular NLS are given.

Proper citation: PredictNLS (RRID:SCR_003133) Copy   


  • RRID:SCR_003249

    This resource has 1+ mentions.

http://www.ichip.de/software/SplicingCompass.html

Software for detection of differential splicing between two different conditions using RNA-Seq data.

Proper citation: SplicingCompass (RRID:SCR_003249) Copy   


  • RRID:SCR_003279

    This resource has 50+ mentions.

https://bitbucket.org/dranew/defuse

Software package for gene fusion discovery using RNA-Seq data. It uses clusters of discordant paired end alignments to inform a split read alignment analysis for finding fusion boundaries.

Proper citation: deFuse (RRID:SCR_003279) Copy   


  • RRID:SCR_003151

    This resource has 10+ mentions.

http://abi.inf.uni-tuebingen.de/Services/MultiLoc2

An extensive high-performance subcellular protein localization prediction system that incorporates phylogenetic profiles and Gene Ontology terms to yield higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. A downloadable version of MultiLoc2 for local use is also available.

Proper citation: MultiLoc (RRID:SCR_003151) Copy   


  • RRID:SCR_003139

    This resource has 10000+ mentions.

http://primer3.ut.ee

Tool used to design PCR primers from DNA sequence - often in high-throughput genomics applications. It does everything from mispriming libraries to sequence quality data to the generation of internal oligos.

Proper citation: Primer3 (RRID:SCR_003139) Copy   


  • RRID:SCR_003212

    This resource has 100+ mentions.

http://phenome.jax.org/

Database enables integration of genomic and phenomic data by providing access to primary experimental data, data collection protocols and analysis tools. Data represent behavioral, morphological and physiological disease-related characteristics in naive mice and those exposed to drugs, environmental agents or other treatments. Collaborative standardized collection of measured data on laboratory mouse strains to characterize them in order to facilitate translational discoveries and to assist in selection of strains for experimental studies. Includes baseline phenotype data sets as well as studies of drug, diet, disease and aging effect., protocols, projects and publications, and SNP, variation and gene expression studies. Provides tools for online analysis. Data sets are voluntarily contributed by researchers from variety of institutions and settings, or retrieved by MPD staff from open public sources. MPD has three major types of strain-centric data sets: phenotype strain surveys, SNP and variation data, and gene expression strain surveys. MPD collects data on classical inbred strains as well as any fixed-genotype strains and derivatives that are openly acquirable by the research community. New panels include Collaborative Cross (CC) lines and Diversity Outbred (DO) populations. Phenotype data include measurements of behavior, hematology, bone mineral density, cholesterol levels, endocrine function, aging processes, addiction, neurosensory functions, and other biomedically relevant areas. Genotype data are primarily in the form of single-nucleotide polymorphisms (SNPs). MPD curates data into a common framework by standardizing mouse strain nomenclature, standardizing units (SI where feasible), evaluating data (completeness, statistical power, quality), categorizing phenotype data and linking to ontologies, conforming to internal style guides for titles, tags, and descriptions, and creating comprehensive protocol documentation including environmental parameters of the test animals. These elements are critical for experimental reproducibility.

Proper citation: Mouse Phenome Database (MPD) (RRID:SCR_003212) Copy   


http://dip.doe-mbi.ucla.edu/

Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.

Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy   


  • RRID:SCR_003200

    This resource has 100+ mentions.

http://www.sysbio.se/piano/

Software R-package for running gene set analysis using various statistical methods, from different gene level statistics and a wide range of gene-set collections. The Piano package contains functions for combining the results of multiple runs of gene set analyses.

Proper citation: Piano (RRID:SCR_003200) Copy   


  • RRID:SCR_003168

    This resource has 1+ mentions.

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/

Software package for the statistical language R, devoted to the analysis of next generation short read data of RNA-seq transcripts. It provides predictions of alternative exons in a single condition/cell sample, predictions of differential alternative exons between two conditions/cell samples, and quantification of alternative splice forms in a single condition/cell sample.

Proper citation: Solas (RRID:SCR_003168) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X