Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection

http://www.lamhdi.org/

THIS RESOURCE IS NO LONGER IN SERVICE, it has been replaced by Monarch Initiative. LAMHDI, the initiative to Link Animal Models to Human DIsease, is designed to accelerate the research process by providing biomedical researchers with a simple, comprehensive Web-based resource to find the best animal model for their research. LAMDHI is a free, Web-based, resource to help researchers bridge the gap between bench testing and human trials. It provides a free, unbiased resource that enables scientists to quickly find the best animal models for their research studies. LAMHDI includes mouse data from MGI, the Mouse Genome Informatics website; zebrafish data from ZFIN, the Zebrafish Model Organism Database; rat data from RGD, the Rat Genome Database; yeast data from SGD, the Saccharomyces Genome Database; and fly data from FlyBase. LAMHDI.org is operational today, and data is added regularly. Enhancements are planned to let researchers contribute their knowledge of the animal models available through LAMHDI. The LAMHDI goal is to allow researchers to share information about and access to animal models so they can refine research and testing, and reduce or replace the use of animal models where possible. LAMHDI Database Search: LAMHDI brings together scientifically validated information from various sources to create a composite multi-species database of animal models of human disease. To do this, the LAMHDI database is prepared from a variety of sources. The LAMHDI team takes publicly available data from OMIM, NCBI''s Entrez Gene database, Homologene, and WikiPathways, and builds a mathematical graph (think of it as a map or a web) that links these data together. OMIM is used to link human diseases with specific human genes, and Entrez provides universal identifiers for each of those genes. Human genes are linked to their counterpart genes in other species with Homologene, and those genes are linked to other genes tentatively or authoritatively using the data in WikiPathways. This preparatory work gives LAMHDI a web of human diseases linked to specific human genes, orthologous human genes, homologous genes in other species, and both human and non-human genes involved in specific metabolic pathways associated with those diseases. LAMHDI includes model data that partners provide directly from their data structures. For instance, MGI provides information about mouse models, including a disease for each model, as well as some genetic information (the ID of the model, in fact, identifies one or more genes). ZFIN provides genetic information for each zebrafish model, but no diseases, so zebrafish models are integrated by using the genes as the glue. For instance, a zebrafish model built to feature the zebrafish PKD2 gene would plug into the larger disease-gene map at the node representing the zebrafish PKD2 gene, which is connected to the node representing the human PKD2 gene, which in turn is connected to the node representing the human disease known as polycystic kidney disease. (Some of the partner data LAMHDI receives can even extend the base map. MGI provides a disease for every model, and in some cases this allows the creation of a disease-to-gene relationship in the LAMHDI database that might not already be documented in the OMIM dataset.) With curatorial and model information in hand, LAMHDI runs a lengthy automated process that exhaustively searches for every possible path between each model and each disease in the data, up to a set number of hops, producing for each disease-to-model pair a set of links from the disease to the model. The algorithm avoids circular paths and paths that include more than one disease anywhere in the middle of the path. At the end of this phase, LAMHDI has a comprehensive set of paths representing all the disease-to-model relationships in the data, varying in length from one hop to many hops. Each disease-to-model path is essentially a string of nodes in the data, where each node represents a disease, a gene, a linkage between genes (an orthologue, a homologue, or a pathway connection, referred to as a gene cluster or association), or a model. Each node has a human-friendly label, a set of terms and keywords, and - in most cases - a URL linking the node to the data source where it originated. When a researcher submits a search on the LAMHDI website, LAMHDI searches for the user''s search terms in its precomputed list of all known disease-to-model paths. It looks for the terms not only in the disease and model nodes, but also in every node along each path. The complete set of hits may include multiple paths between any given disease-to-model pair of endpoints. Each of these disease-to-model pair sets is ordered by the number of hops it involves, and the one involving the fewest hops is chosen to represent its respective disease-to-model pair in the search results presented to the user. Results are sorted by scores that represent their matches. The number of hops is one barometer of the strength of the evidence linking the model and the disease; fewer hops indicates the relationship is stronger, more hops indicates it may be weaker. This indicator works best for comparing models from a single partner dataset: MGI explicitly identifies a disease for each mouse model, so there can be disease-to-model hits for mice that involve just one hop. Because ZFIN does not explicitly identify a disease for each model, no zebrafish model will involve fewer than four hops to the nearest disease, from the zebrafish model to a zebrafish gene to a gene cluster to a human gene to a human disease.

Proper citation: LAMHDI: The Initiative to Link Animal Models to Human DIsease (RRID:SCR_008643) Copy   


https://www.ohsu.edu/custom/library/digital-collections/projectionmap

Data set of thalamo-centric mesoscopic projection maps to the cortex and striatum. The maps are established through two-color, viral (rAAV)-based tracing images and high throughout imaging.

Proper citation: Mouse Thalamic Projectome Dataset (RRID:SCR_015702) Copy   


  • RRID:SCR_003255

    This resource has 10+ mentions.

http://ndbserver.rutgers.edu/

A database of three-dimensional structural information about nucleic acids and their complexes. In addition to primary data, it contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for the analysis of nucleic acids. A variety of search capabilities are available, as are many different types of reports. NDB maintains the macromolecular Crystallographic Information File (mmCIF).

Proper citation: Nucleic Acid Database (RRID:SCR_003255) Copy   


  • RRID:SCR_004620

    This resource has 1+ mentions.

http://integromedb.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016. Search engine that integrates over 100 curated and publicly contributed data sources and provides integrated views on the genomic, proteomic, transcriptomic, genetic and functional information currently available. Information featured in the database includes gene function, orthologies, gene expression, pathways and protein-protein interactions, mutations and SNPs, disease relationships, related drugs and compounds.

Proper citation: IntegromeDB (RRID:SCR_004620) Copy   


  • RRID:SCR_005809

    This resource has 100+ mentions.

http://bigg.ucsd.edu/

A knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.

Proper citation: BiGG Database (RRID:SCR_005809) Copy   


  • RRID:SCR_005529

    This resource has 1+ mentions.

http://www.phenologs.org/

Database for identifying orthologous phenotypes (phenologs). Mapping between genotype and phenotype is often non-obvious, complicating prediction of genes underlying specific phenotypes. This problem can be addressed through comparative analyses of phenotypes. We define phenologs based upon overlapping sets of orthologous genes associated with each phenotype. Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype associations reveal many significant phenologs, including novel non-obvious human disease models. For example, phenologs suggest a yeast model for mammalian angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. Phenologs thus create a rich framework for comparing mutational phenotypes, identify adaptive reuse of gene systems, and suggest new disease genes. To search for phenologs, go to the basic search page and enter a list of genes in the box provided, using Entrez gene identifiers for mouse/human genes, locus ids for yeast (e.g., YHR200W), or sequence names for worm (e.g., B0205.3). It is expected that this list of genes will all be associated with a particular system, trait, mutational phenotype, or disease. The search will return all identified model organism/human mutational phenotypes that show any overlap with the input set of the genes, ranked according to their hypergeometric probability scores. Clicking on a particular phenolog will result in a list of genes associated with the phenotype, from which potential new candidate genes can identified. Currently known phenotypes in the database are available from the link labeled ''Find phenotypes'', where the associated gene can be submitted as queries, or alternately, can be searched directly from the link provided.

Proper citation: Phenologs (RRID:SCR_005529) Copy   


  • RRID:SCR_006891

    This resource has 1+ mentions.

http://www.physionet.org/physiobank/database/gaitpdb/

Database that contains measures of gait from 93 patients with idiopathic PD (mean age: 66.3 years; 63% men), and 73 healthy controls (mean age: 66.3 years; 55% men). The database includes the vertical ground reaction force records of subjects as they walked at their usual, self-selected pace for approximately 2 minutes on level ground. Underneath each foot were 8 sensors (Ultraflex Computer Dyno Graphy, Infotronic Inc.) that measure force (in Newtons) as a function of time. The output of each of these 16 sensors has been digitized and recorded at 100 samples per second, and the records also include two signals that reflect the sum of the 8 sensor outputs for each foot. This database also includes demographic information, measures of disease severity (i.e., using the Hoehn & Yahr staging and/or the Unified Parkinson's Disease Rating Scale) and other related measures (available in HTML or xls spreadsheet format). A subset of the database includes measures recorded as subjects performed a second task (serial 7 subtractions) while walking, which shows excerpts of swing time series from a patient with PD and a control subject, under usual walking conditions and when performing serial 7 subtractions. Under usual walking conditions, variability is larger in the patient with PD (Coefficient of Variation = 2.7%), compared to the control subject (CV = 1.3%). Variability increases during dual tasking in the subject with PD (CV = 6.5%), but not in the control subject (CV = 1.2%).

Proper citation: Gait in Parkinson's Disease (RRID:SCR_006891) Copy   


http://www.wwpdb.org/

Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.

Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy   


  • RRID:SCR_000400

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/dbSTS/

THIS RESOURCE IS NO LONGER IN SERVICE, as of October 1, 2013; however, the site is still accessible. NCBI resource that contains sequence and mapping data on short genomic landmark sequences or Sequence Tagged Sites. STS sequences are incorporated into the STS Division of GenBank. The dbSTS database offers a route for submission of STS sequences to GenBank. It is designed especially for the submission of large batches of STS sequences.

Proper citation: dbSTS (RRID:SCR_000400) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


http://mistdb.com

Database which contains the signal transduction proteins for complete and draft bacterial and archaeal genomes. The MiST2 database identifies and catalogs the repertoire of signal transduction proteins in microbial genomes.

Proper citation: MiST - Microbial Signal Transduction database (RRID:SCR_003166) Copy   


  • RRID:SCR_001473

http://www.sfn.org/SiteObjects/published/0000BDF20016F63800FD712C30FA42DD/1304F8BE908CE526359306C138737F9F/file/NRF%20Contacts.pdf

This resource provides a list of federal program officials in the neurosciences. An informal compendium of names and contact information for nearly 300 research grant and scientific review administrators in 21 organizational units.

Proper citation: NRF Contacts (RRID:SCR_001473) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.

Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy   


  • RRID:SCR_002580

    This resource has 50+ mentions.

http://www.biostars.org/

A question answer forum for scientists, focusing on methods in bioinformatics, computational genomics and biological data analysis. They welcome detailed and specific posts, written clearly and simply.

Proper citation: BioStar (RRID:SCR_002580) Copy   


  • RRID:SCR_002771

    This resource has 1+ mentions.

http://www.cbil.upenn.edu/RAD

THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.

Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy   


  • RRID:SCR_002720

    This resource has 1+ mentions.

http://www.credrivermice.org/

Project to provide Neuroscience Community with mouse strains that are suitable for tissue and cell-type-specific perturbation of gene function in nervous system. NIH Neuroscience Blueprint has established three centers in the USA for generation of genetically modified mice expressing CRE recombinases in nervous system on the C57BJ/6 genetic background. Mouse lines are generated at Cold Spring Harbor Lab, at Scripps Research Institute, and at Baylor College of Medicine.

Proper citation: CRE Driver Network (RRID:SCR_002720) Copy   


http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.

Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy   


  • RRID:SCR_002968

http://www.mybiosoftware.com/population-genetics/332

A tool for SNP Search and downloading with local management. It also offers flanking sequence downloading and automatic SNP filtering. It requires Windows and .NET Framework.

Proper citation: SNPHunter (RRID:SCR_002968) Copy   


http://www.icpsr.umich.edu/

Data archive of more than 500,000 files of research in the social sciences, hosting 16 specialized collections of data in education, aging, criminal justice, substance abuse, terrorism, and other fields. ICPSR comprises a consortium of about 700 academic institutions and research organizations providing training in data access, curation, and methods of analysis for the social science research community. ICPSR welcomes and encourages deposits of digital data. ICPSR's educational activities include the Summer Program in Quantitative Methods of Social Research external link, a comprehensive curriculum of intensive courses in research design, statistics, data analysis, and social methodology. ICPSR also leads several initiatives that encourage use of data in teaching, particularly for undergraduate instruction. ICPSR-sponsored research focuses on the emerging challenges of digital curation and data science. ICPSR researchers also examine substantive issues related to our collections, with an emphasis on historical demography and the environment.

Proper citation: Inter-university Consortium for Political and Social Research (ICPSR) (RRID:SCR_003194) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X