Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://discover.nci.nih.gov/rsconnect/cellminercdb/
Web application integrating cancer cell line pharmacogenomics. Enables exploration and analysis of cancer cell line pharmacogenomic data across different sources. Focuses on cancer patient-derived human cell line molecular and pharmacological data. CellMinerCDB (v1.2) includes several improvements.
Proper citation: CellMinerCDB (RRID:SCR_025649) Copy
https://github.com/mwang87/MassQueryLanguage
Software application for universal searching of Mass Spectrometry data. Open source MS query language for flexible and mass spectrometer manufacturer-independent mining of MS data. Implements common MS terminology to build consensus vocabulary to search for MS patterns in single mass spectrometry run. Enables set of mass spectrometry patterns to be queried directly from raw data.
Proper citation: MassQL (RRID:SCR_025106) Copy
https://fmug.amaral.northwestern.edu/
Software data-driven tool to identify understudied genes and characterize their tractability. Users submit list of human genes and can filter these genes down based on list of factors. Code to generate Find My Understudied Genes app for Windows, iOS and macOS platforms.
Proper citation: Find My Understudied Genes (RRID:SCR_025047) Copy
http://www.sci.utah.edu/cibc/software/231-biomesh3d.html
A free, easy to use program for generating quality meshes for use in biological simulations. It is currently integrated with SCIRun and uses the SCIRun system to visualize the intermediate results. The BioMesh3D program uses a particle system to distribute nodes on the separating surfaces that separate the different materials and then uses the TetGen software package to generate a full tetrahedral mesh.
Proper citation: BioMesh3D (RRID:SCR_009534) Copy
http://amp.pharm.mssm.edu/X2K/
Software tool to produce inferred networks of transcription factors, proteins, and kinases predicted to regulate the expression of the inputted gene list by combining transcription factor enrichment analysis, protein-protein interaction network expansion, with kinase enrichment analysis. It provides the results as tables and interactive vector graphic figures.
Proper citation: eXpression2Kinases (RRID:SCR_016307) Copy
https://github.com/SciKnowEngine/kefed.io
Knowledge engineering software for reasoning with scientific observations and interpretations. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a "neural connection matrix" interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. The KEfED model is designed to provide a lightweight representation for scientific knowledge that is (a) generalizable, (b) a suitable target for text-mining approaches, (c) relatively semantically simple, and (d) is based on the way that scientist plan experiments and should therefore be intuitively understandable to non-computational bench scientists. The basic idea of the KEfED model is that scientific observations tend to have a common design: there is a significant difference between measurements of some dependent variable under conditions specified by two (or more) values of some independent variable.
Proper citation: Knowledge Engineering from Experimental Design (RRID:SCR_001238) Copy
The MiND: Metadata in NIfTI for DWI framework enables data sharing and software interoperability for diffusion-weighted MRI. This site provides specification details, tools, and examples of the MiND mechanism for representing important metadata for DWI data sets at various stages of post-processing. MiND framework provides a practical solution to the problem of interoperability between DWI analysis tools, and it effectively expands the analysis options available to end users. To assist both users and developers in working with MiND-formatted files, we provide a number of software tools for download. * MiNDHeader A utility for inspecting MiND-extended files. * I/O Libraries Programming libraries to simplify writing and parsing MiND-formatted data. * Sample Files Example files for each MiND schema. * DIRAC LONI''s Diffusion Imaging Reconstruction and Analysis Collection is a DWI processing suite which utilizes the MiND framework.
Proper citation: LONI MiND (RRID:SCR_004820) Copy
http://hanalyzer.sourceforge.net/
An open-source data integration system designed to assist biologists in explaining the results observed in genome-scale experiments as well as generating new hypotheses. It combines information extraction techniques, semantic data integration, and reasoning and facilitates network visualization. The Hanalyzer source code and binaries are available for download.
Proper citation: Hanalyzer (RRID:SCR_000923) Copy
http://www.isi.edu/projects/bioscholar/overview
Knowledge management and engineering system software for experimental biomedical scientists permitting a single scientific worker (at the level of a graduate student or postdoctoral worker) to design, construct and manage a shared knowledge repository for a research group derived on a local store of PDF files. Usability is especially emphasized within a laboratory so that this software could provide support to experimental scientists attempting to construct a personalized representation of their own knowledge on a medium scale. The BioScholar system uses a graphical interface to create experimental designs based on the experimental variables in the system. The design is then analyzed to construct a tabular input form based on the data flow. They call this methodology "Knowledge Engineering from Experimental Design" or "KEfED". The approach is domain-independent but domain-specific modules reasoning can be constructed to generate interpretations from the observational data represented in the KEfED model. The application is available for download as platform-specific installers including Linux, Unix, Mac OS, and Windows. The installer will install an application that will run the BioScholar server. This server uses Jetty as its integrated web server.
Proper citation: Bioscholar (RRID:SCR_001380) Copy
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149502/
Software for comprehensive quantitative measure of splicing impact of complete set of RNA 6-mer sequences by deep sequencing successfully spliced transcripts.
Proper citation: ESRseq score (RRID:SCR_022270) Copy
Software for statistical approach to identify loci within genes that are both significantly enriched in slowly translated codons and evolutionarily conserved, and also co-translational protein folding model.
Proper citation: Coarse grained co-translational folding analysis (RRID:SCR_022271) Copy
http://www.birncommunity.org/collaborators/function-birn/
The FBIRN Federated Informatics Research Environment (FIRE) includes tools and methods for multi-site functional neuroimaging. This includes resources for data collection, storage, sharing and management, tracking, and analysis of large fMRI datasets. fBIRN is a national initiative to advance biomedical research through data sharing and online collaboration. BIRN provides data-sharing infrastructure, software tools, strategies and advisory services - all from a single source.
Proper citation: Function BIRN (RRID:SCR_007291) Copy
https://www.rosettacommons.org/home
Molecular modeling software package for 3D structure prediction and high resolution design of proteins, nucleic acids, and non natural polymers. Used in computational biology, including de novo protein design, enzyme design, ligand docking, and structure prediction of biological macromolecules and macromolecular complexes.
Proper citation: Rosetta (RRID:SCR_015701) Copy
https://midasnetwork.us/covid-19/
Portal for COVID-19 modeling research. Public access data collections with documented metadata.Computational models to study transmission dynamics of broad range of infectious diseases.
Proper citation: Modeling Infectious Disease Agents Study online portal for COVID-19 (RRID:SCR_018281) Copy
https://github.com/KarrLab/de_sim
Software object oriented discrete event simulation tool for complex, data driven modeling. Open source, Python based object oriented discrete event simulation tool that makes it easy to use large, heterogeneous datasets and high level data science tools such as NumPy, Scipy, pandas, and SQLAlchemy to build and simulate complex computational models.
Proper citation: DE-Sim (RRID:SCR_018770) Copy
The RNA modification database provides a comprehensive listing of posttranscriptionally modified nucleosides from RNA. Information provided for each nucleoside includes: the type of RNA in which it occurs and phylogenetic distribution; common chemical name and symbol; Chemical Abstracts registry number and index name; chemical structure; initial literature citations for structural characterization or occurrence, and for chemical synthesis. Both the structural diversity and extent of posttranscriptional modification in RNA is remarkable, with 107 different nucleosides presently known in all types of RNA. The discovery of new modified nucleosides as well as increasing knowledge of the array of functional roles of modification, based largely on extensive studies of tRNA, mandates a need for a comprehensive database of RNA nucleosides. The RNA Modification Database is maintained as an extension of the initial version published in mid-1994. The database consists of all RNA-derived ribonucleosides of known structure, including those from established sequence positions, as well as those detected or characterized from hydrolysates of RNA. The information provided permits access to the modified nucleoside literature through provision of both computer-searchable Chemical Abstracts registry numbers and key literature citations. This database also provides an historical record of the initial reports of occurrence, characterization and chemical synthesis of modified nucleosides from RNA. It is our judgement that the total number of RNA nucleosides listed, and the chemical structures reported, are very accurate. However, the distributions listed are in some cases a matter of concern, due primarily to the possibility of inhomogeneity of the RNA isolate and the use of methods of nucleoside identification that are not sufficiently rigorous. Reinvestigation of some of the unusual or single-report source distributions is warranted, and will likely lead to future refinements in the listings. The authors invite comments concerning new entries, errors or omissions and on the format presently used for electronic access to the database.
Proper citation: RNA Modification Database (RRID:SCR_003535) Copy
https://www.cgl.ucsf.edu/chimera/
Software tool for interactive visualization and analysis of molecular structures and related data, including density maps, supramolecular assemblies, sequence alignments, docking results, trajectories, and conformational ensembles. High-quality images and animations can be generated. Chimera includes complete documentation and several tutorials.
Proper citation: UCSF Chimera (RRID:SCR_004097) Copy
Curated, relational database containing sequence, classification, structural, functional and evolutionary information about transport systems from variety of living organisms based on IUBMB-approved transporter classification (TC) system. Descriptions, TC numbers, and examples of over 600 families of transport proteins are provided. TC system is analogous to Enzyme Commission (EC) system for classification of enzymes, except that it incorporates both functional and phylogenetic information. TCDB users may submit their own sequenced proteins and descriptions for inclusion into database. The software tools used are all freely available for download. These programs are used for analysis of Protein and DNA sequences. Programs require UNIX server to run.
Proper citation: Transporter Classification Database (RRID:SCR_004490) Copy
System that classifies genes by their functions, using published scientific experimental evidence and evolutionary relationships to predict function even in absence of direct experimental evidence. Orthologs view is curated orthology relationships between genes for human, mouse, rat, fish, worm, and fly., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PANTHER (RRID:SCR_004869) Copy
http://rankprop.gs.washington.edu/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on May,18,2020. Ranking algorithm that exploits global network structure of similarity relationships among proteins in database by performing diffusion operation on protein similarity network with weighted edges. Source code and web server for searching non-redundant protein database. Web server ranks proteins found in NRDB40 (from PairsDB) against query sequence of amino acids using Rankprop algorithm.
Proper citation: Rankprop - Protein Ranking by Network Propagation (RRID:SCR_007159) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.