Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Through the General Clinical Research Centers (GCRC) program, NCRR funds a national network that provides settings for medical investigators to conduct safe, controlled, state-of-the-art, in-patient and out-patient studies of both children and adults. GCRCs also provide infrastructure and resources that support several career development opportunities.
Proper citation: General Clinical Research Centers Program (RRID:SCR_002847) Copy
https://code.google.com/p/proteomecommons-tranche/
A distributed file storage system that you can upload files to and download files from. All files uploaded to the repository are replicated several times to protect against their accidental loss. Files uploaded to the repository can be of any size, can be of any file type, and can be encrypted with a passphrase of your choosing. The Proteome Commons Tranche repository is the first instance of a Tranche repository. Tranche, was created so that anybody can take it and make their own Tranche repository. This is the first implementation of the Tranche software, and is useful as a test bed for the software. This repository relies on educational institutions to provide the hardware and facilities for Tranche servers. While we maintain a set of servers, the continued growth of this public resource will rely on the generosity of the institutions that use the repository most.
Proper citation: Proteome Commons Tranche repository (RRID:SCR_003441) Copy
A multicenter randomized clinical trial that aims to determine the best therapies for people with type 2 diabetes and moderately severe cardiovascular disease. 2368 participants were randomized at 49 sites in 6 countries. All subjects were given intensive medical therapy to control cholesterol and blood pressure and given counseling, if needed, to quit smoking and to lose weight. Beyond that, they compared whether prompt revascularization, either bypass surgery or angioplasty, e.g. stents, was more effective than medical therapy alone. At the same time, they also looked at which of two diabetes treatment strategies resulted in better outcomes����??insulin-providing versus insulin-sensitizing - that is, increasing the amount of insulin or making the insulin work better. Only patients with known type 2 diabetes and heart disease that could be treated appropriately with a revascularization OR medical therapy alone were eligible for the trial. Patients entered the study between January 2001 ����?? March 2005 and were followed for an average of five years. When a patient entered the study, physicians first decided whether that patient should receive stenting or bypass surgery. The patient then received their randomization assignment. All patients were treated in BARI 2D for both their diabetes and heart disease, as well as other risk factors that might effect those diseases, regardless of which group they were in. Diabetes-specific complications including retinopathy, nephropathy, neuropathy, and peripheral vascular disease were monitored regularly. Tests, blood samples, urine samples, and treatment cost data were obtained periodically through the trial and examined by experts at 7 central laboratories and other research partners. Experts on risk factors routinely oversaw treatments of all patients at 4 central management centers. A panel of independent experts reviewed data every six months to make sure that all patients were receiving safe care.
Proper citation: BARI 2D (RRID:SCR_001496) Copy
Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.
Proper citation: Biological General Repository for Interaction Datasets (BioGRID) (RRID:SCR_007393) Copy
http://www.patternlabforproteomics.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible
Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy
http://ligand-expo.rutgers.edu/
An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.
Proper citation: Ligand Expo (RRID:SCR_006636) Copy
Project aimed at making neuroimaging data sets of brain freely available to scientific community. By compiling and freely distributing neuroimaging data sets, future discoveries in basic and clinical neuroscience are facilitated.
Proper citation: Open Access Series of Imaging Studies (RRID:SCR_007385) Copy
http://proteomics.ucsd.edu/Software/NeuroPedia/index.html
A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.
Proper citation: NeuroPedia (RRID:SCR_001551) Copy
Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.
Proper citation: UniProt (RRID:SCR_002380) Copy
Biomedical technology research center that conducts high-sensitivity structural determinations and analyses of biological compounds via mass spectrometry. The emphasis is on glycoconjugates, oligosaccharides and proteins.
Proper citation: BUSM Mass Spectrometry Resource (RRID:SCR_000823) Copy
http://bmsr.usc.edu/software/adapt/
Software tool as plug-in developed for ImageJ/FIJI platform to automatically detect and analyse cell migration and morphodynamics. Provides whole cell analysis of multiple cells, while also returning data on individual membrane protrusion events.
Proper citation: ADAPT (RRID:SCR_006769) Copy
http://www.jax.org/imr/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.
Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy
National public repository system for mutant mice. Archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by biomedical research community. Includes breeding/distribution facilities and information coordinating center. Mice strains are cryopreserved, unless live colony must be established. Live mice are supplied from production colony, from colony recovered from cryopreservation, or via micro-injection of cell line into host blastocysts. MMRRC member facilities also develop technologies to improve handling of mutant mice, including advances in assisted reproductive techniques, cryobiology, genetic analysis, phenotyping and infectious disease diagnostics.
Proper citation: Mutant Mouse Resource and Research Center (RRID:SCR_002953) Copy
http://www.jax.org/smsr/index.html
Resource of special strains of mice that are valuable tools for genetic analysis of complex diseases. They include panels of recombinant inbred (RI) and chromosome substitution (CS) strains.
Proper citation: Special Mouse Strains Resource (RRID:SCR_002885) Copy
http://www.ouhsc.edu/compmed/documents/DevelopmentofaSpecificPathogenFreeBaboonColony.pdf
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Program developing a self-sustaining colony of baboons free of all known herpesviruses, four retroviruses, and SV40 for research. When the program is fully developed, they will provide healthy, behaviorally normal, SPF baboons that are free of all known herpes viruses, four retroviruses, and SV40. To accomplish this goal, the center has established in collaboration with co-investigators and consultants serological and PCR tests for each of the 11 target viruses. These baboon viruses include six herpesviruses (analogs of human HSV, VZV, CMV, HHV6, EBV, and HHV8), four retroviruses (simian foamy virus, SRV/D, SIV, and STLV), and SV40. Twenty-four infant baboons are being recruited into the SPF program in each of the first five years, for a final total of at least 66 SPF baboons. All infants will be repeatedly tested for each of the target viruses. At one month of age, larger social groups of 4-6 SPF animals are formed. Beginning at 2-3 years of age, SPF animals will be integrated into larger socially compatible groups. These groups will eventually mature into breeding harems of SPF animals. This approach provides infants with age-matched companions for socialization during their early period of development, minimizes opportunities for transmission of viruses to the infants from adult animals, and allows for the simultaneous elimination of many different viruses from SPF animals.
Proper citation: Development of a Specific-Pathogen-Free Baboon Colony (RRID:SCR_002900) Copy
Biomedical technology research center that develops, tests and applies technology aimed toward completely automating the processes involved in solving macromolecular structures using cryo-electron microscopy. The goal is to establish a resource that will serve both as a center for high-throughput molecular microscopy as well as for transferring this technique to the research community. Current Core Technology Research and Development is focused on 4 areas: improving grid substrates and specimen preparation; further automation and optimization of image acquisition; development of an integrated single particle analysis and processing pipeline; and the development of automated high throughput EM screening. NRAMM welcomes applications of both collaborative and service projects.
Proper citation: National Resource for Automated Molecular Microscopy (RRID:SCR_001448) Copy
Biomedical technology research center that develops methods, both experimental and theoretical, of modern electron spin resonance (ESR) for biomedical applications. Center technologies are applicable to the determination of the structure and complex dynamics of proteins. Principal areas of expertise: * Pulsed Fourier Transform and Two Dimensional ESR * High Frequency-High Field (HFHF) ESR * High Resolution ESR Microscopy * Theory and Computational Methods for Modern ESR Activities include: * making resources available to the biomedical community, * publishing results, * running workshops on the new methodologies, * addressing the need to bring these new technologies to other laboratories.
Proper citation: National Biomedical Center for Advanced ESR Technology (RRID:SCR_001444) Copy
Biomedical technology research center that develops new algorithms, visualizations and conceptual frameworks to study biological networks at multiple levels and scales, from protein-protein and genetic interactions to cell-cell communication and vast social networks. They are developing freely available, open-source suite of software technology that broadly enables network-based visualization, analysis, and biomedical discovery for NIH-funded researchers. This software is enabling researchers to assemble large-scale biological data into models of networks and pathways and to use these networks to better understand how biological systems operate under normal conditions and how they fail in disease. The National Resource for Network Biology is organized around the following key components: Technology Research and Development, Driving Biomedical Projects, Outreach, Training and Dissemination of Tools. The NRNB supports several types of training events, including both virtual and live workshops; tutorials sessions for clinicians, biologists and bioinformaticians; presentations and demonstrations at conferences; online tutorials and webcasts; and annual symposium.
Proper citation: National Resource for Network Biology (RRID:SCR_004259) Copy
http://depts.washington.edu/yeastrc/
Biomedical technology research center that (1) exploits the budding yeast Saccharomyces cerevisiae to develop novel technologies for investigating and characterizing protein function and protein structure (2) facilitates research and extension of new technologies through collaboration, and (3) actively disseminates data and technology to the research community. Through collaboration, the YRC freely provides resources and expertise in six core technology areas: Protein Tandem Mass Spectrometry, Protein Sequence-Function Relationships, Quantitative Phenotyping, Protein Structure Prediction and Design, Fluorescence Microscopy, Computational Biology.
Proper citation: Yeast Resource Center (RRID:SCR_007942) Copy
Biomedical Technology Resource Center that develops image processing and analysis techniques for basic and clinical neurosciences. The NAC research approach emphasizes both specific core technologies and collaborative application projects. The core activity of the center is the development of algorithms and techniques for postprocessing of imaging data. New segmentation techniques aid identification of brain structures and disease. Registration methods are used for relating image data to specific patient anatomy or one set of images to another. Visualization tools allow the display of complex anatomical and quantitative information. High-performance computing hardware and associated software techniques further accelerate algorithms and methods. Digital anatomy atlases are developed for the support of both interactive and algorithmic computational tools. Although the emphasis of the NAC is on the dissemination of concepts and techniques, specific elements of the core software technologies have been made available to outside researchers or the community at large. The NAC's core technologies serve the following major collaborative projects: Alzheimer's disease and the aging brain, morphometric measures in schizophrenia and schizotypal disorder, quantitative analysis of multiple sclerosis, and interactive image-based planning and guidance in neurosurgery. One or more NAC researchers have been designated as responsible for each of the core technologies and the collaborative projects.
Proper citation: Neuroimage Analysis Center (RRID:SCR_008998) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.