Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 786 results
Snippet view Table view Download 786 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_001847

    This resource has 10000+ mentions.

http://surfer.nmr.mgh.harvard.edu/

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

Proper citation: FreeSurfer (RRID:SCR_001847) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   


  • RRID:SCR_002166

    This resource has 10+ mentions.

http://www.nitrc.org/projects/voxbo

Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.

Proper citation: VoxBo (RRID:SCR_002166) Copy   


http://www.nitrc.org/projects/miva/

Software package that is a powerful graphical interface that displays, segments, aligns, manipulates, and blends image (pixel) and geometry (real-world coordinates) data simultaneously. Several applications are directly built into MIVA. Registration modes include interactive affine transformations. Fiducial registration tools facilitate rapid alignments for inter-modality volumes. Interactive Region of Interst (ROI) and Volume-of-Interest (VOI) tools exist to segment medical images. Virtually unique to MIVA are its 3D geometry tools and their compatibility with pixel based medical images. A full 3D interactive rat brain atlas is in an fMRI module which walks one through the necessary steps of fMRI. A multiple material surface routine takes segmented medical slices and creates 3D triangulated surfaces that align along all region boarders without overlap or gaps. These surfaces are the direct input into the MIVA tetrahedral mesh generator.

Proper citation: Medical Image Visualization and Analysis (RRID:SCR_002315) Copy   


  • RRID:SCR_002318

    This resource has 1+ mentions.

http://www.nitrc.org/projects/mriwatcher/

This simple visualization tool allows to load several images at the same time. The cursor across all windows are coupled and you can move/zoom on all the images at the same time. Very useful for quality control, image comparison.

Proper citation: MriWatcher (RRID:SCR_002318) Copy   


http://www.nitrc.org/projects/mgdm/

An efficient level set framework for multi-object segmentation. Its representation inherently prevents overlaps and gaps and it readily preserves object topology and object relationships. MGDM is efficient, storing only a fixed number of functions for any number of objects, and therefore scales well to segmentation problems with many classes and large images. It's representation also avoids some instabilities in other multi-class level set methods. MGDM is cross-platform; MATLAB wrappers, Java source and API are provided, with MIPAV plugins forthcoming.

Proper citation: MGDM: Multi Geometric Deformable Model (RRID:SCR_002311) Copy   


http://www.nitrc.org/projects/sreps/

Software to fit s-reps to segmented anatomic objects, to compute probability distributions on these s-reps, to train and to apply classifiers between two classes of anatomic objects, and to apply hypothesis testing to determine which geometric or physiological features vary significantly between two classes. Software for object segmentation from medical images may also be included. S-reps are skeletal models for anatomic objects especially suited for computing probability distributions from populations of these objects and for providing object-related coordinates for the interior of these objects. They allow classification and hypothesis testing using their geometric features and physiological features derived from medical images. They also allow the definition of shape spaces, probability-based geometric typicality functions, and appearance models used for segmentation or registration. A variety of successful applications to objects in neuroimages have already been performed.

Proper citation: S-rep Fitting Statistics and Segmentation (RRID:SCR_002540) Copy   


  • RRID:SCR_002542

    This resource has 10+ mentions.

http://scralyze.sourceforge.net

A powerful software for model-based analysis of peripheral psychophysiology (e.g. skin conductance, heart rate, pupil size etc.). General linear modelling and dynamic causal modelling of these signals provide for inference on neural states/processes. SCRalyze includes flexible data import and display, statistical inference and results display and export. Easy programming of add-ons for new data formats, signal channels, and models.

Proper citation: SCRalyze (RRID:SCR_002542) Copy   


http://www.nitrc.org/projects/ontology/

Project to discuss, debate, develop and deploy ontological practices for the fMRI community.

Proper citation: Resource Ontology Discussion Group (RRID:SCR_002536) Copy   


https://github.com/mjacquem/RodentThickness

An automatic cortical thickness measurement tool for rat brains. The pipeline consists of four steps: preprocessing to create binary mask and label map, thickness measurement which produces laplacian field and thickness map in order, run particle correspondence followed by statistical analysis resulting in mean thickness color map and t-test result. By running RodentThickness, you will need to fill in informations in a Graphical User Interface, and then compute. You can also run the tool in command line without using the GUI. Using the GUI, you will be able to save or load a dataset file or a configuration file. The tool needs these other tools to work, so be sure to have these installed on your computer: * ImageMath * measureThicknessFilter * GenParaMeshCLP * ParaToSPHARMMeshCLP * ShapeWorksRun * ShapeWorksGroom * SegPostProcessCLP * BinaryToDistanceMap * MeshPointsIntensitysampling

Proper citation: Rodent Cortical Thickness Analysis (RRID:SCR_002539) Copy   


http://www.kcl.ac.uk/iop/depts/neuroimaging/research/imaginganalysis/Software/rBET.aspx

A modified version of the Brain Extraction Tool (BET) that can process rodent brains.

Proper citation: Rodent Brain Extraction Tool (RRID:SCR_002538) Copy   


  • RRID:SCR_002496

http://www.nitrc.org/projects/nptk/

Non-rigid registration / distortion correction tools for enhanced functional localization through the registration of EPI fMRI to high-resolution anatomical MRI.

Proper citation: NPTK (RRID:SCR_002496) Copy   


http://www.nitrc.org/projects/nitrc_es/

Support and community integration for the enhanced NITRC services of the Image Repository (IR) and the Computational Environment (CE). The NITRC Computational Environment, an on-demand, cloud based computational virtual machine pre-installed with popular NITRC neuroimaging tools built using NeuroDebian. NITRC Image Repository is built upon XNAT and supports both NIfTI and DICOM images. The NITRC-IR offers 3,733 Subjects, and 3,743 Imaging Sessions searchable across seven projects to promote re-use and integration of valuable NIH-funded data.

Proper citation: NITRC Enhanced Services (RRID:SCR_002494) Copy   


  • RRID:SCR_002490

http://www.nitrc.org/projects/niral_utilities/

Open-source utilities that are C++ based command line applications that allow image analysis and processing using ITK or VTK libraries. Specifically the following utilities are contained thus far: * ImageMath - the swiss army knife image modification * ImageStat - compute stats on images * IntensityRescaler - rescale/normalize intensities using a prior brain tissue segmentation * convertITKformats - convert 3D images in all ITK formats (NRRD, NIFTI, GIPL, Meta etc) * DWI_NiftiNrrdConversion - convert DWI and DTI from/to NRRD and NIFTI, works with UNC DTI tools and FSL * CropTools - crops 3D and 4D images * PolydataMerge - Merges VTK polydata files * PolydataTransform - Transforms polydata files * TransformDeformationField - concatenates or average deformation fields (H-fields or displacement fields) * DTIAtlasBuilder - Creates a DTI average from multiple DTI images

Proper citation: NIRAL Utilities (RRID:SCR_002490) Copy   


  • RRID:SCR_002524

    This resource has 10+ mentions.

http://pysurfer.github.com

Software Python tool for visualization and interaction with cortical surface representations of neuroimaging data from Freesurfer. It extends Mayavi powerful visualization engine with interface for working with MRI and MEG data. PySurfer offers command-line interface designed to broadly replicate Freesurfer program as well as Python library for writing scripts to explore complex datasets., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PySurfer (RRID:SCR_002524) Copy   


  • RRID:SCR_002441

    This resource has 1+ mentions.

http://mgui.wikidot.com

An open source Java-based project intended to provide a graphic user interface (GUI) for interactions between scientists (or enthusiasts) and their data. In its current (beta) form, mgui offers the following functionality: * Cross-platform functionality (with a Java Runtime installation, runs on Linux, Windows, Mac, or Solaris) * 2D rendering of data based upon Java2D, and 3D rendering based upon Java3D * The ability to organize complex datasets into intuitive mgui projects * A processing pipeline interface which allows users to process their datasets with any available Java or native software tools * An extensible I/O framework accommodating a variety of standard and non-standard file formats * Database connectivity using JDBC * Graph visualization based upon the JUNG library * An intuitive Swing-based GUI for managing, querying, and visualizing data * Various CAD-type tools for editing and creating geometry * A computational modelling framework

Proper citation: ModelGUI (RRID:SCR_002441) Copy   


http://www.nitrc.org/projects/srsn/

Forum (Spanish) for sharing information and knowledge on this network, a collaboration between different research groups in Spain and national and international centres. (Foro para compartir datos y conocimiento sobre esta red. Se constituye el Spanish Resting State Network como una colaboracion entre distintos grupos de investigacion de Espa������a y centros nacionales e internacionales.)

Proper citation: Spanish Resting State Network (RRID:SCR_002562) Copy   


  • RRID:SCR_002445

    This resource has 10+ mentions.

http://air.bmap.ucla.edu/MultiTracer2/MultiTracer.html

A Java application that allows images to be displayed in three dimensions. The tool allows anatomic structures to be traced and the tracings to be saved in a format that facilitates review and revision. It supports NIfTI-1.1 format float, double and signed and unsigned byte, short, and integer formats and provides legacy support for Analyze 7.5 8 and 16 bit images. It provides image display, editing, delineation of structure boundaries, export of traced contours and generation of masked volumes. Images are displayed in 3 orthogonal views. Time series can be displayed as averaged or contrast images and time courses can be visualized graphically. Version 2 provides enhancements to the original MultiTracer feature set.

Proper citation: MultiTracer (RRID:SCR_002445) Copy   


http://www.nitrc.org/projects/multimodal/

Scan-rescan imaging sessions on 21 healthy volunteers (no history of neurological disease) intended to be a resource for statisticians and imaging scientists to be able to quantify the reproducibility of their imaging methods using data available from a generic 1 hour session at 3T. Imaging modalities include MPRAGE, FLAIR, DTI, resting state fMRI, B0 and B1 field maps, ASL, VASO, quantitative T1 mapping, quantitative T2 mapping, and magnetization transfer imaging. All data have been converted to NIFTI format. Please cite: Bennett. A. Landman, Alan J. Huang, Aliya Gifford, Deepti S. Vikram, Issel Anne L. Lim, Jonathan A.D. Farrell, John A. Bogovic, Jun Hua, Min Chen, Samson Jarso, Seth A. Smith, Suresh Joel, Susumu Mori, James J. Pekar, Peter B. Barker, Jerry L. Prince, and Peter C.M. van Zijl. ?Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study?, NeuroImage. (2010) NIHMS/PMC:252138 doi:10.1016/j.neuroimage.2010.11.047

Proper citation: Multi-Modal MRI Reproducibility Resource (RRID:SCR_002442) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X