Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://integrativebiology.org/
Database for molecular interaction information integrated with various other bio-entity information, including pathways, diseases, gene ontology (GO) terms, species and molecular types. The information is obtained from several manually curated databases and automatic extraction from literature. There are protein-protein interaction, gene/protein regulation and protein-small molecule interaction information stored in the database. The interaction information is linked with relevant GO terms, pathway, disease and species names. Interactions are also linked to the PubMed IDs of the corresponding abstracts the interactions were obtained from. Manually curated molecular interaction information was obtained from BioGRID, IntAct, NCBI Gene, and STITCH database. Pathway related information was obtained from KEGG database, Pathway Interaction database and Reactome. Disease information was obtained from PharmGKB and KEGG database. Gene ontology terms and related information was obtained from Gene Ontology database and GOA database.
Proper citation: Integrated Molecular Interaction Database (RRID:SCR_003546) Copy
http://150.216.56.64/index.php
Database platform for cotton expressed sequence tag (EST)-related information, covering assembled contigs, function annotation, analysis of GO and KEGG, SNP, miRNA, SSR-related marker information.
Proper citation: Cotton EST Database (RRID:SCR_003301) Copy
http://phenom.ccbr.utoronto.ca/index.jsp
Database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae, it allows storing, retrieving, visualizing and data mining the quantitative single-cell measurements extracted from micrographs of the temperature-sensitive (ts) mutant cells. PhenoM allows users to rapidly search and retrieve raw images and their quantified morphological data for genes of interest. The database also provides several data-mining tools, including a PhenoBlast module for phenotypic comparison between mutant strains and a Gene Ontology module for functional enrichment analysis of gene sets showing similar morphological alterations. About one-fifth of the genes in the budding yeast are essential for haploid viability and cannot be functionally assessed using standard genetic approaches such as gene deletion. To facilitate genetic analysis of essential genes, we and others have assembled collections of yeast strains expressing temperature-sensitive (ts) alleles of essential genes. To explore the phenotypes caused by essential gene mutation we used a panel of genetically engineered fluorescent markers to explore the morphology of cells in the ts strain collection using high-throughput microscopy. The database contains quantitative measurements of 1,909,914 cells and 78,194 morphological images for 775 temperature-sensitive mutants spanning 491 different essential genes in permissive temperature (26* C) and restrictive temperature (32* C). The morphological images were generated by high-content screening (HCS) technology.
Proper citation: PhenoM - Phenomics of yeast Mutants (RRID:SCR_006970) Copy
Functional Analysis of Transcriptional Networks (FunNet) is designed as an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytical model implemented in this tool involves two abstraction layers: transcriptional (i.e. gene expression profiles) and functional (i.e. biological themes indicating the roles of the analyzed transcripts). A functional analysis technique, which relies on Gene Ontology and KEGG annotations, is applied to extract a list of relevant biological themes from microarray gene expression data. Afterwards multiple-instance representations are built to relate relevant biological themes to their annotated transcripts. An original non-linear dynamical model is used to quantify the contextual proximity of relevant genomic themes based on their patterns of propagation in the gene co-expression network (i.e. capturing the similarity of the expression profiles of the transcriptional instances of annotating themes). In the end an unsupervised multiple-instance spectral clustering procedure is used to explore the modular architecture of the co-expression network by grouping together biological themes demonstrating a significant relationship in the co-expression network. Functional and transcriptional representations of the co-expression network are provided, together with detailed information on the contextual centrality of related transcripts and genomic themes. FunNet is provided both as a web-based tool and as a standalone R package. The standalone R implementation can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix) and can be downloaded from the FunNet website, or from the worldwide mirrors of CRAN. Both implementations of the FunNet tool are provided freely under the GNU General Public License 2.0. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FunNet - Transcriptional Networks Analysis (RRID:SCR_006968) Copy
http://goblet.molgen.mpg.de/cgi-bin/goblet2008/goblet.cgi
Tool that performs annotation based on GO and pathway terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. GOblet expects query sequences to be in FASTA-Format (with header-lines). Protein and nucleotide sequences are accepted. Total size of all sequences submitted per request should not be larger than 50kb currently. For security reasons: Larger post's will be rejected. Due to limited capacities the queries may be processed in batches depending on the server load. The output of the BLAST job is filtered automatically and the relevant hits are displayed. In addition, the respective GO-terms are shown together with the complete GO-hierarchy of parent terms., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GOblet (RRID:SCR_006998) Copy
http://bioinfo.cau.edu.cn/agriGO/
A web-based tool and database for the gene ontology analysis. Its focus is on agricultural species and is user-friendly. The agriGO is designed to provide deep support to agricultural community in the realm of ontology analysis. Compared to other available GO analysis tools, unique advantages and features of agriGO are: # The agriGO especially focuses on agricultural species. It supports 45 species and 292 datatypes currently. And agriGO is designed as an user-friendly web server. # New tools including PAGE (Parametric Analysis of Gene set Enrichment), BLAST4ID (Transfer IDs by BLAST) and SEACOMPARE (Cross comparison of SEA) were developed. The arrival of these tools provides users with possibilities for data mining and systematic result exploration and will allow better data analysis and interpretation. # The exploratory capability and result visualization are enhanced. Results are provided in different formats: HTML tables, tabulated text files, hierarchical tree graphs, and flash bar graphs. # In agriGO, PAGE and SEACOMPARE can be used to carry out cross-comparisons of results derived from different data sets, which is very important when studying multiple groups of experiments, such as in time-course research. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: agriGO (RRID:SCR_006989) Copy
http://organelledb.lsi.umich.edu/
Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.
Proper citation: Organelle DB (RRID:SCR_007837) Copy
http://ophid.utoronto.ca/navigator/
A software package for visualizing and analyzing protein-protein interaction networks. NAViGaTOR can query OPHID / I2D - online databases of interaction data - and display networks in 2D or 3D. To improve scalability and performance, NAViGaTOR combines Java with OpenGL to provide a 2D/3D visualization system on multiple hardware platforms. NAViGaTOR also provides analytical capabilities and supports standard import and export formats such as GO and the Proteomics Standards Initiative (PSI). NAViGaTOR can be installed and run on Microsoft Windows, Linux / UNIX, and Mac OS systems. NAViGaTOR is written in Java and uses JOGL (Java bindings for OpenGL) to support scalability, highlighting or suppressing of information, and other advanced graphic approaches.
Proper citation: Network Analysis, Visualization and Graphing TORonto (RRID:SCR_008373) Copy
Ratings or validation data are available for this resource
Software integrated platform that provides analysis, management and visualization tools for next-generation sequencing data. It supports workflows for RNA-Seq, DNA-Seq, ChIP-Seq and small RNA-Seq experiments. Avadis has a built-in Gene Ontology browser to view ontology hierarchies. There are common ontology paths for multiple genes. Platform has collection of data / text mining algorithms, data visualization libraries, workflow/application automation layers, and enterprise data organization functions. These functions are available as libraries that allow developers to rapidly build software prototypes, applications and off-the-shelf products. The collection of algorithms and visualizations in AVADIS grows as new applications using the platform are developed. Currently, the algorithms that AVADIS platform contains range from general purpose statistical mining and modelling algorithms, to text mining algorithms, to very application-specific algorithms for microarray / NGS data analysis, QSAR modelling and biological networks analysis. AVADIS has a collection of powerful mining algorithms like PCA, ANOVA, T-test, clustering, classification and regression methods. The range of visualizations includes most statistical and data modelling related graphing views, and very application-specific visualizations. Some of the statistical views include 2D/3D scatter plots, profile plots, heat maps, histograms and matrix plot; data modelling relevant views include dendrograms, cluster profiles, similarity images and SOM U-matrices. Application-specific views in AVADIS include pathway network views, genome browsers, chemical structure views and pipe-line views. Platform: Windows compatible, Mac OS X compatible, Linux compatible,
Proper citation: Avadis (RRID:SCR_000644) Copy
http://www.cs.cmu.edu/~jernst/stem/
The Short Time-series Expression Miner (STEM) is a Java program for clustering, comparing, and visualizing short time series gene expression data from microarray experiments (~8 time points or fewer). STEM allows researchers to identify significant temporal expression profiles and the genes associated with these profiles and to compare the behavior of these genes across multiple conditions. STEM is fully integrated with the Gene Ontology (GO) database supporting GO category gene enrichment analyses for sets of genes having the same temporal expression pattern. STEM also supports the ability to easily determine and visualize the behavior of genes belonging to a given GO category or user defined gene set, identifying which temporal expression profiles were enriched for these genes. (Note: While STEM is designed primarily to analyze data from short time course experiments it can be used to analyze data from any small set of experiments which can naturally be ordered sequentially including dose response experiments.) Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Short Time-series Expression Miner (STEM) (RRID:SCR_005016) Copy
http://www.bumc.bu.edu/cardiovascularproteomics/cpctools/strap/
Software program that automatically annotates a protein list with information that helps in the meaningful interpretation of data from mass spectrometry and other techniques. It takes protein lists as input, in the form of plain text files, protXML files (usually from the TPP), or Dat files from MASCOT search results. From this, it generates protein annotation tables, and a variety of GO charts to aid individual and differential analysis of proteomics data. It downloads information from mainly the Uniprot and EBI QuickGO databases. STRAP requires Windows XP or higher with at least version 3.5 of the Microsoft .NET Framework installed. Platform: Windows compatible
Proper citation: STRAP (RRID:SCR_005675) Copy
http://www.uniprot.org/help/uniprotkb
Central repository for collection of functional information on proteins, with accurate and consistent annotation. In addition to capturing core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added. This includes widely accepted biological ontologies, classifications and cross-references, and experimental and computational data. The UniProt Knowledgebase consists of two sections, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot (reviewed) is a high quality manually annotated and non-redundant protein sequence database which brings together experimental results, computed features, and scientific conclusions. UniProtKB/TrEMBL (unreviewed) contains protein sequences associated with computationally generated annotation and large-scale functional characterization that await full manual annotation. Users may browse by taxonomy, keyword, gene ontology, enzyme class or pathway.
Proper citation: UniProtKB (RRID:SCR_004426) Copy
http://www.emouseatlas.org/emage
A database of in situ gene expression data in the developing mouse embryo and an accompanying suite of tools to search and analyze the data. mRNA in situ hybridization, protein immunohistochemistry and transgenic reporter data is included. The data held is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. The conceptual framework which houses the descriptions of the gene expression patterns in EMAGE is the EMAP Mouse Embryo Anatomy Atlas. This consists of a set of 3D virtual embryos at different stages of development, as well as an accompanying ontology of anatomical terms found at each stage. The raw data images can be conventional 2D photographs (of sections or wholemount specimens) or 3D images of wholemount specimens derived from Optical Projection Tomography (OPT) or confocal microscopy. Users may submit data using a Data submission tool or without.
Proper citation: EMAGE Gene Expression Database (RRID:SCR_005391) Copy
Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneCodis (RRID:SCR_006943) Copy
http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMerge (RRID:SCR_005744) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.
Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy
http://babelomics.bioinfo.cipf.es
An integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Version 4 of Babelomics integrates primary (normalization, calls, etc.) and secondary (signatures, predictors, associations, TDTs, clustering, etc.) analysis tools within an environment that allows relating genomic data and/or interpreting them by means of different functional enrichment or gene set methods. Such interpretation is made not only using functional definitions (GO, KEGG, Biocarta, etc.) but also regulatory information (from Transfac, Jaspar, etc.) and other levels of regulation such as miRNA-mediated interference, protein-protein interactions, text-mining module definitions and the possibility of producing de novo annotations through the Blast2GO system . Babelomics has been extensively re-engineered and now it includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. In this release GEPAS and Babelomics have integrated into a unique web application with many new features and improvements: * Data input: import and quality control for the most common microarray formats * Normalization and base calling: for the most common expression, tiling and SNP microarrays (Affymetrix and Agilent). * Transcriptomics: diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and time-series analysis. * Genotyping: stratification analysis, association, TDT. * Functional profiling: functional enrichment and gene set enrichment analysis with functional terms (GO, KEGG, Biocarta, etc.), regulatory (Transfac, Jaspar, miRNAs, etc.), text-mining, derived bioentities, protein-protein interaction analysis. * Integrative analysis: Different variables can be related to each other (e.g. gene expression to gnomic copy number) and the results subjected to functional analysis. Platform: Online tool
Proper citation: Babelomics (RRID:SCR_002969) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Meta Gene Profiler (MetaGP) is a web application tool for discovering differentially expressed gene sets (meta genes) from the gene set library registered in our database. Once user submits gene expression profiles which are categorized into subtypes of conditioned experiments, or a list of genes with the valid pvalues, MetaGP assigns the integrated p-value to each gene set by combining the statistical evidences of genes that are obtained from gene-level analysis of significance. The current version supports the nine Affymetrix GeneChip arrays for the three organisms (human, mouse and rat). The significances of GO terms are graphically mapped onto the directed acyclic graph (DAG). The navigation systems of GO hierarchy enable us to summarize the significance of interesting sub-graphs on the web browser. Platform: Online tool
Proper citation: MetaGeneProfiler (RRID:SCR_005794) Copy
http://ccbb.jnu.ac.in/OntoVisT.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. Web based ontological visualization tool for interactive visualization of any ontological hierarchy for a specific node of interest, up to the chosen level of children and/or ancestor. It takes any ontology file in OBO format as input and generates output as DAG hierarchical graph for the chosen query. To enhance the navigation capabilities of complex networks, we have embedded several features such as search criteria, zoom in/out, center focus, nearest neighbor highlights and mouse hover events. The application has been tested on all 72 data sets available in OBO format through OBO foundry. The results for few of them can be accessed through OntoVisT-Gallery.
Proper citation: OntoVisT (RRID:SCR_005674) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.