Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://neuronalarchitects.com/ibiofind.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.
Proper citation: iBIOFind (RRID:SCR_001587) Copy
Project aggregates and provides experimental gene expression data from genito-urinary system. International consortium providing molecular atlas of gene expression for developing organs of GenitoUrinary (GU) tract. Mouse strains to facilitate developmental and functional studies within GU system. Experimental protocols and standard specifications. Tutorials describing GU organogenesis and primary data via database. Data are from large-scale in situ hybridization screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of developing mouse genitourinary (GU) system.
Proper citation: GenitoUrinary Development Molecular Anatomy Project (RRID:SCR_001554) Copy
http://www.vilber.de/en/products/gel-documentation/e-box/
Stand alone gel imager for gel documentation. Provides high-resolution images of DNA, RNA or protein gels. Images can either be printed out directly or saved in internal storage. Transfer of data to PC is possible.
Proper citation: Vilber E-BOX CX5 TS gel imager (RRID:SCR_026106) Copy
https://allsheng.com.cn/product_cont_61.html
Nano-100 microspectrophotometer to measure concentration of nucleic acid, protein and cell solution. 0.5 to 2μl of sample volume is required for each measurement. No cuvette is required. At the end of measurement, sample could be either wiped off directly or recovered with pipettor.
Proper citation: ALLSHENG Nano100 Micro-specrophotometer (RRID:SCR_026096) Copy
https://azurebiosystems.com/products/azure-imaging-systems/azure-600/
Benchtop instrument designed for life science research, specifically for imaging, detecting, and quantifying protein and nucleic acids on gels and blots. It enables multi-channel analysis, including laser infrared (IR) fluorescence, RGB visible fluorescence, and chemiluminescence, allowing for multiplexed Western blots.
Proper citation: Azure Biosystems c600 Imaging System (RRID:SCR_027952) Copy
https://www.bdbiosciences.com/zh-cn/products/instruments/single-cell-multiomics-systems/rhapsody
System allows high-throughput capture of multiomic information from single cells using cartridge workflow and multitier barcoding system. Used for high-throughput, multiomic profiling of single cells. Allows to analyze gene expression at both mRNA and protein levels, as well as other cellular characteristics, using microwell-based system with multitiered barcoding approach.This enables the generation of various next-generation sequencing (NGS) libraries for deeper analysis.
Proper citation: BD Rhapsody Single-Cell Analysis System (RRID:SCR_027096) Copy
http://www.dkfz.de/en/mga/Groups/LIFEdb-Database.html
Database that integrates large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. LifeDB integrates data regarding full length cDNA clones and data on expression of encoded protein and their subcellular localization on mammalian cell line. LifeDB enables the scientific community to systematically search and select genes, proteins as well as cDNA of interest by specific database identifiers as well as gene name. It enables to visualize cDNA clone and subcellular location of proteins. It also links the results to external biological databases in order to provide a broader functional information. LifeDB also provides an annotation pipeline which facilitates an improved mapping of clones to known human reference transcripts from the RefSeq database and the Ensembl database. An advanced web interface enables the researchers to view the data in a more user friendly manner. Users can search using any one of the following search options available both in Search gene and cDNA clones and Search Sub-cellular locations of human proteins: By Keyword, By gene/transcript identifier, By plate name, By clone name, By cellular location. * The Search genes and cDNA clones results include: Gene Name, Ensemble ID, Genomic Region, Clone name, Plate name, Plate position, Classification class, Synonymous SNP''s, Non- synonymous SNP''s, Number of ambiguous positions, and Alignment with reference genes. * The Search sub-cellular locations of human proteins results include: Subcellular location, Gene Name, Ensemble ID, Clone name, True localization, Images, Start tag and End tag. Every result page has an option to download result data (excluding the microscopy images). On click of ''Download results as CSV-file'' link in the result page the user will be given a choice to open or save result data in form of a CSV (Comma Separated Values) file. Later the CSV file can be easily opened using Excel or OpenOffice.
Proper citation: LifeDB (RRID:SCR_006899) Copy
http://thomsonreuters.com/metacore/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. An integrated software suite for functional analysis of experimental data. The scope of data types includes microarray and SAGE gene expression, SNPs and CGH arrays, proteomics, metabolomics, pathway analysis, Y2H and other custom interactions. MetaCore is based on a proprietary manually curated database of human protein-protein, protein-DNA and protein compound interactions, metabolic and signaling pathways and the effects of bioactive molecules in gene expression.
Proper citation: MetaCore (RRID:SCR_008125) Copy
http://idp1.force.cs.is.nagoya-u.ac.jp/pscdb/
Database for protein structural change upon ligand binding that are classified into 7 classes in terms of the ligand binding sites and the location where the dominant motion occurs. # Coupled Domain motions are the domain motions induced upon ligand binding. # Independent Domain motions are the observable domain motions regardless of ligand binding. # Coupled Local motions are the local motions induced upon ligand binding. # Independent Local motions are the observable local motions regardless of ligand binding. # Burying ligand motions are imaginable motions required to hold ligand protein-inside. # No significant motions mean just nothing happen. # Other motions are motions unclassified into domain and local motions. Proteins are flexible molecules that undergo structural changes to function. The Protein Data Bank contains multiple entries for identical proteins determined under different conditions, e.g. with and without a ligand molecule, which provides important information for understanding the structural changes related to protein functions. We gathered 839 protein structural pairs of ligand-free and ligand-bound states from monomeric or homo-dimeric proteins, and constructed the Protein Structural Change DataBase (PSCDB). In the database, we focused on whether the motions were coupled with ligand binding. As a result, the protein structural changes were classified into seven classes, i.e. coupled domain motion (59 structural changes), independent domain motion (70), coupled local motion (125), independent local motion (135), burying ligand motion (104), no significant motion (311) and other type motion (35). PSCDB provides lists of each class. On each entry page, users can view detailed information about the motion, accompanied by a morphing animation of the structural changes.
Proper citation: PSCDB - Protein Structural Change DataBase (RRID:SCR_006116) Copy
Biomedical technology research center that develops methods, both experimental and theoretical, of modern electron spin resonance (ESR) for biomedical applications. Center technologies are applicable to the determination of the structure and complex dynamics of proteins. Principal areas of expertise: * Pulsed Fourier Transform and Two Dimensional ESR * High Frequency-High Field (HFHF) ESR * High Resolution ESR Microscopy * Theory and Computational Methods for Modern ESR Activities include: * making resources available to the biomedical community, * publishing results, * running workshops on the new methodologies, * addressing the need to bring these new technologies to other laboratories.
Proper citation: National Biomedical Center for Advanced ESR Technology (RRID:SCR_001444) Copy
http://depts.washington.edu/yeastrc/
Biomedical technology research center that (1) exploits the budding yeast Saccharomyces cerevisiae to develop novel technologies for investigating and characterizing protein function and protein structure (2) facilitates research and extension of new technologies through collaboration, and (3) actively disseminates data and technology to the research community. Through collaboration, the YRC freely provides resources and expertise in six core technology areas: Protein Tandem Mass Spectrometry, Protein Sequence-Function Relationships, Quantitative Phenotyping, Protein Structure Prediction and Design, Fluorescence Microscopy, Computational Biology.
Proper citation: Yeast Resource Center (RRID:SCR_007942) Copy
Biomedical technology research center that develops mass spectrometry-based tools for the study of proteins, lipids and metaboilites. These include biomarker identification, stable isotope mass spectrometry and the analysis of intact proteins. Our goals are: * to conduct basic research in the science of mass spectrometry * to establish collaborative research projects with scientists at WU and at other institutions * to provide a service in mass spectrometry * to educate and train students in mass spectrometry * to disseminate results of our research and descriptions of the subject of mass spectrometry
Proper citation: NIH / NCRR Mass Spectrometry Resource Washington University in St. Louis (RRID:SCR_009009) Copy
http://harvester.fzk.de/harvester/
Harvester is a Web-based tool that bulk-collects bioinformatic data on human proteins from various databases and prediction servers. It is a meta search engine for gene and protein information. It searches 16 major databases and prediction servers and combines the results on pregenerated HTML pages. In this way Harvester can provide comprehensive gene-protein information from different servers in a convenient and fast manner. As full text meta search engine, similar to Google trade mark, Harvester allows screening of the whole genome proteome for current protein functions and predictions in a few seconds. With Harvester it is now possible to compare and check the quality of different database entries and prediction algorithms on a single page. Sponsors: This work has been supported by the BMBF with grants 01GR0101 and 01KW0013.
Proper citation: Bioinformatic Harvester IV (beta) at Karlsruhe Institute of Technology (RRID:SCR_008017) Copy
World's open biospecimen research database where biobanks and biomedical researchers meet to exchange human biospecimen needs and supply: whole blood, serum, plasma, solid tissue samples and more. The connection is accelerated so researchers save valuable time and money and tissue banks utilize inventory. The pace of specimen procurement remains unacceptably slow to the biomedical research community. Specimen Central is the foremost global resource to aid biomedical researchers in expediting their search for high quality human biospecimens, tissues, samples and specimens. They facilitate your search for blood, whole blood, buccal swab, DNA, RNA, protein, cell lines, plasma, serum, RBC, white cells, buffy coat, fluid, marrow, urine, stem cells, and solid tissue such as tumor, tumor and biopsy materials spanning all manner of common and rare pathologies and indications including Alzheimer's, basal cell carcinoma, bladder cancer, bone cancer, brain cancer, breast cancer, cerebrospinal fluid, amniotic fluid, colorectal cancer, colon cancer, hodgkins and non-hodgkins lymphoma, kidney/renal cancer, leukemia, liver cancer, lung cancer, melanoma, multiple sclerosis, myeloma neuroblastoma, neurodegenerative diseases, ovarian cancer, pancreatic cancer, prostate cancer, urinary cancer. This includes adult and pediatric indications. Specimen Central users specify a number of variables in their Specimen Requests, including preparation, preservation and handling requirements such as cryo-preserved, FFPE (Formalin-fixed paraffin-embedded), formalin, frozen, refrigerated, OCT, snap frozen, paraffin block, fresh, prospective, autopsy or cadaveric, etc. Many users require clinically annotated date associated with their specimens, as well as documentation of IRB or ethics committee approval and informed consents. For Researchers Most specimen databases require researchers to waste time and effort entering lengthy registrations and search queries that yield poor results, if anything. Specimen Central solves this problem by having tissue banks search for you. From years to months, months to weeks, and weeks to days, Specimen Central seeks to reduce delays and costs in the research & development life cycle by expediting connections between demand and supply. For Biobanks The capital costs of maintaining a biobank infrastructure are substantial and growing. Biobanks use Specimen Central as a marketing tool to augment their business development efforts. By routinely checking Specimen Central's Specimen Requests, biobanks can uncover market demand for their inventories and develop new connections and revenue streams to defray costs. Specimen Central supplements - not displaces - the efforts of your sales representatives, agents, brokers and commercial partners.
Proper citation: SpecimenCentral.com (RRID:SCR_003536) Copy
http://www.signaling-gateway.org/molecule/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 29,2025. Relational database of all significant published qualitative and quantitative information on cell signaling proteins. The Molecule Pages database was developed with the specific aim of allowing interactions, and indeed whole pathways, to be modeled. The goal is to filter the data to present only validated information. In addition, the Gateway is the home of Signaling Update, which provides a one-stop overview of the latest and hottest research in cell signaling for both the specialist and non-specialist alike.
Proper citation: UCSD-Nature Signaling Gateway Molecule Pages (RRID:SCR_006907) Copy
Software that detects kinase-specific phosphorylation sites. GPS provides a platform able to perform its prediction based on a group-based phosphorylation scoring algorithm. It allows users to query multiple protein sequences through a batch prediction mode.
Proper citation: GPS (RRID:SCR_016374) Copy
Commercial provider of antibodies, antigens and recombinant proteins from Braintree, Massachusetts . Biotechnology company which provides custom oligonucleotides synthesis service.
Proper citation: kbDNA Inc. (RRID:SCR_016570) Copy
Project portal's database of protein-ligand data sets provided by pharmaceutical partners that provide atomic details of drug mechanisms that will be used to improve computer-aided drug-design methods and thus accelerate drug discovery. The project aims to help companies release the high-quality data they have generated, which has incredible value to researchers working to improve methods of computer-aided drug discovery. Everyone stands to benefit from the ability to develop new medications more quickly and inexpensively. What computational chemists globally are trying to do is to make faster, more accurate, more predictive programs to speed up the process. Part of their mission is to engage the community in these challenges to test newly developed predictive algorithms.
Proper citation: Drug Design Data Resource (RRID:SCR_000497) Copy
A package for statistical relative quantification of proteins and peptides in global, targeted, and data-independent proteomics. It handles shotgun, label-free, and label-based Selected Reaction Monitoring, as well as SWATH/DIA (Data Independent Acquisition) experiments. MSStats provide functionality for data processing and visualization, model-based statistical analysis, and model-based sample size calculations.
Proper citation: MSstats (RRID:SCR_014353) Copy
http://www.ccdc.cam.ac.uk/free_services/relibase_free
Web-based system for searching and analysing protein-ligand structures in the Protein Data Bank (PDB). The database provides an easily accessible web-browser interface and clear 3D structure visualisation that allows for 3D protein-ligand interaction searches, automatic superimposition and detailed analysis of related binding sites to identify protein flexibility, ligand overlap, and conserved water positions.
Proper citation: Relibase (RRID:SCR_014888) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.