Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 8 showing 141 ~ 160 out of 176 results
Snippet view Table view Download 176 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_003070

    This resource has 10000+ mentions.

https://imagej.net/

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

Proper citation: ImageJ (RRID:SCR_003070) Copy   


  • RRID:SCR_017350

    This resource has 1+ mentions.

https://github.com/neitzlab/sbfsem-tools

Data analysis and 3D visualization for connectomics and serial electron microscopy. This toolbox provides missing 3D visualization and analysis tools for cylinder-based annotations. Integration with contour, skeleton based annotations and common morphology file formats is also supported.

Proper citation: SBFSEM-tools (RRID:SCR_017350) Copy   


https://github.com/SilverLabUCL/SilverLab-Microscope-Software

Software for use with compact Acousto-Optic Lens Microscope (AOLM) developed in the Silver Lab at UCL. Written in LabVIEW. Performs multiple imaging modes and protocols including Z-stacks, multi-plane, single-plane, sub-volume, patches and points. It comes with tools for visualising data acquired with system.

Proper citation: Silver Lab Microscopy Software (RRID:SCR_017456) Copy   


http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

Probabilistic atlases covering 48 cortical and 21 subcortical structural areas, derived from structural data and segmentations kindly provided by the Harvard Center for Morphometric Analysis. T1-weighted images of 21 healthy male and 16 healthy female subjects (ages 18-50) were individually segmented by the CMA using semi-automated tools developed in-house. The T1-weighted images were affine-registered to MNI152 space using FLIRT (FSL), and the transforms then applied to the individual labels. Finally, these were combined across subjects to form population probability maps for each label. Segmentations used to create these atlases were provided by: David Kennedy and Christian Haselgrove, Centre for Morphometric Analysis, Harvard; Bruce Fischl, the Martinos Center for Biomedical Imaging, MGH; Janis Breeze and Jean Frazier from the Child and Adolescent Neuropsychiatric Research Program, Cambridge Health Alliance; Larry Seidman and Jill Goldstein from the Department of Psychiatry of Harvard Medical School.

Proper citation: Harvard - Oxford Cortical Structural Atlas (RRID:SCR_001476) Copy   


http://www.tbi-impact.org/

Project focused on advancing knowledge of prognosis, trial design and treatment in Traumatic Brain Injury. IMPACT has developed and validated prognostic models for classification and characterization of TBI series, and participated in development of standardization of data collection in TBI studies.

Proper citation: IMPACT: International Mission for Prognosis and Analysis of Clinical Trials in TBI (RRID:SCR_000539) Copy   


http://www.nitrc.org/projects/mni2orfromxyz/

Input either normalized MNI coordinates from a 3D image, or input real world XYZ matrix coordinates, and this code will convert coordinates of one type to the other.

Proper citation: Convert MNI coordinates to or from XYZ (RRID:SCR_000406) Copy   


http://www.nitrc.org/projects/frats/

Software for the analysis of multiple diffusion properties along fiber bundle as functions in an infinite dimensional space and their association with a set of covariates of interest, such as age, diagnostic status and gender, in real applications. The resulting analysis pipeline can be used for understanding normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles.

Proper citation: Functional Regression Analysis of DTI Tract Statistics (RRID:SCR_002293) Copy   


  • RRID:SCR_017631

    This resource has 50+ mentions.

https://github.com/sccn/labstreaminglayer

System for unified collection of measurement time series in research experiments that handles networking, time synchronization, near real time access as well as optionally centralized collection, viewing and disk recording of data. System for synchronizing streaming data for live analysis or recording.

Proper citation: Lab Streaming Layer (RRID:SCR_017631) Copy   


http://www.biac.duke.edu/

BIAC strives for excellence in its dual mission of research and service. BIAC faculty members are leaders in imaging methodology development, in analysis techniques, as well as in their application in cognitive and clinical neurosciences. In addition, BIAC offers imaging service to other imaging faculty members on campus and at the University of North Carolina in Chapel Hill.

Proper citation: Duke University of North Carolina Brain Imaging and Analysis Center Core Facility (RRID:SCR_001712) Copy   


http://nif.nimh.nih.gov/

Neurophysiology imaging core facility that provides anatomical and functional MRI scanning for researchers in the National Institute of Mental Health (NIMH), the National Eye Institute (NEI), and the National Institute for Neurological Disorders and Stroke (NINDS). The shared intramural resource centers on a cutting-edge 4.7T vertical bore scanner dedicated to imaging of nonhuman primates.

Proper citation: Neurophysiology Imaging Facility (RRID:SCR_004080) Copy   


http://www.salk.edu/science/core-facilities/gene-transfer-targeting-and-therapeutics-core/

Core facility that provides consultation on the use of viral vector technologies as well as custom design and production services for multiple vector types. The GT3 facilitates the use of these research tools by Salk researchers and others across diverse fields of study such as systems neuroscience, stem cell biology, metabolism, ageing, cancer biology and gene therapy. The GT3 core is a designated Cancer Center Council (C3) core facility. Cancer Center members from participating C3 institutes have preferential rates.

Proper citation: Salk Institute Gene Transfer Targeting and Therapeutics Viral Vector Core Facility (RRID:SCR_014847) Copy   


http://vox.pharmacology.ucla.edu/home.html

Two-dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 cubic mm gene expression patterns in the brain obtained through voxelation. Voxelation employs high-throughput analysis of spatially registered voxels (cubes) to produce multiple volumetric maps of gene expression analogous to the images reconstructed in biomedical imaging systems.

Proper citation: Voxelation Map of Gene Expression in a Coronal Section of the Mouse Brain (RRID:SCR_008065) Copy   


https://stemcells.nindsgenetics.org/

Cell sources currently include fibroblasts and/or induced pluripotent stem cells for Alzheimer's Disease, Amyotrophic Lateral Sclerosis (ALS), Ataxia-telangiectasia, Frontotemporal Lobar Degeneration (FTD), Huntington's Disease, Parkinson's Disease, and healthy controls. Cell sources, including isogenic cell lines for current and new diseases covered by the NINDS will be added over the next several years.

Proper citation: The NINDS Human Cell and Data Repository (NHCDR) (RRID:SCR_016319) Copy   


http://www.nitrc.org/projects/validate29/

Atlas was created from MRI scans of squirrel monkey brains. The atlas is currently comprised of multiple anatomical templates, diffusion MRI templates, and ex vivo templates. In addition, the templates are combined with histologically defined cortical labels, and diffusion tractography defined white matter labels.

Proper citation: VALiDATe29 Squirrel Monkey Brain Atlas (RRID:SCR_015542) Copy   


  • RRID:SCR_016436

    This resource has 1+ mentions.

https://www.rarediseasesnetwork.org/cms/create/researchers/biorepository

Biorepository of samples collected from patients with ALS, ALS-frontotemporal dementia (ALS-FTD), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), hereditary spastic paraplegia (HSP) and multisystem proteinopathy (MSP). Used by Consortium members and the scientific community to advance therapeutic development through study of the relationship between clinical phenotype and underlying genotype, and also through the discovery and development of biomarkers.

Proper citation: CReATE (RRID:SCR_016436) Copy   


  • RRID:SCR_016486

    This resource has 10+ mentions.

http://www.lincsproject.org/

Project to create network based understanding of biology by cataloging changes in gene expression and other cellular processes when cells are exposed to genetic and environmental stressors. Program to develop therapies that might restore pathways and networks to their normal states. Has LINCS Data Coordination and Integration Center and six Data and Signature Generation Centers: Drug Toxicity Signature Generation Center, HMS LINCS Center, LINCS Center for Transcriptomics, LINCS Proteomic Characterization Center for Signaling and Epigenetics, MEP LINCS Center, and NeuroLINCS Center.

Proper citation: LINCS Project (RRID:SCR_016486) Copy   


  • RRID:SCR_016871

    This resource has 10+ mentions.

http://marrvel.org/

Web tool to search multiple public variant databases simultaneously and provide a unified interface to facilitate the search process. Used for integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Used for analysis of human genes and variants by cross-disciplinary integration of records available in public databases to facilitate clinical diagnosis and basic research.

Proper citation: MARRVEL (RRID:SCR_016871) Copy   


  • RRID:SCR_017099

http://pklab.med.harvard.edu/scde/pagoda.links.html

Software tool for analyzing transcriptional heterogeneity to detect statistically significant ways in which measured cells can be classified. Used to resolve multiple, potentially overlapping aspects of transcriptional heterogeneity by testing gene sets for coordinated variability among measured cells.

Proper citation: PAGODA (RRID:SCR_017099) Copy   


  • RRID:SCR_017068

    This resource has 1+ mentions.

https://github.com/FeeLab/seqNMF

Software tool for unsupervised discovery of sequential structure. Used to detect sequences in neural data generated by internal behaviors, such as animal thinking or sleeping. Used for unsupervised discovery of temporal sequences in high dimensional datasets in neuroscience without reference to external markers.

Proper citation: seqNMF (RRID:SCR_017068) Copy   


  • RRID:SCR_000421

    This resource has 1+ mentions.

http://www.nitrc.org/projects/pennhippoatlas/

Atlas of segmented and normalized high-resolution postmortem MRI of the human hippocampus. Additional data (raw images) is available through the SCM link. It requires knowing how to use CVS.

Proper citation: Penn Hippocampus Atlas (RRID:SCR_000421) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X