Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.humanconnectomeproject.org/
A multi-center project comprising two distinct consortia (Mass. Gen. Hosp. and USC; and Wash. U. and the U. of Minn.) seeking to map white matter fiber pathways in the human brain using leading edge neuroimaging methods, genomics, architectonics, mathematical approaches, informatics, and interactive visualization. The mapping of the complete structural and functional neural connections in vivo within and across individuals provides unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve conclusions about the living human brain. The HCP is being developed to employ advanced neuroimaging methods, and to construct an extensive informatics infrastructure to link these data and connectivity models to detailed phenomic and genomic data, building upon existing multidisciplinary and collaborative efforts currently underway. Working with other HCP partners based at Washington University in St. Louis they will provide rich data, essential imaging protocols, and sophisticated connectivity analysis tools for the neuroscience community. This project is working to achieve the following: 1) develop sophisticated tools to process high-angular diffusion (HARDI) and diffusion spectrum imaging (DSI) from normal individuals to provide the foundation for the detailed mapping of the human connectome; 2) optimize advanced high-field imaging technologies and neurocognitive tests to map the human connectome; 3) collect connectomic, behavioral, and genotype data using optimized methods in a representative sample of normal subjects; 4) design and deploy a robust, web-based informatics infrastructure, 5) develop and disseminate data acquisition and analysis, educational, and training outreach materials.
Proper citation: MGH-USC Human Connectome Project (RRID:SCR_003490) Copy
Ontology that describes structures from the dimensional range encompassing cellular and subcellular structure, supracellular domains, and macromolecules. It is built according to ontology development best practices (re-use of existing ontologies; formal definitions of terms; use of foundational ontologies). It describes the parts of neurons and glia and how these parts come together to define supracellular structures such as synapses and neuropil. Molecular specializations of each compartment and cell type are identified. The SAO was designed with the goal of providing a means to annotate cellular and subcellular data obtained from light and electron microscopy, including assigning macromolecules to their appropriate subcellular domains. The SAO thus provides a bridge between ontologies that describe molecular species and those concerned with more gross anatomical scales. Because it is intended to integrate into ontological efforts at these other scales, particular care was taken to construct the ontology in a way that supports such integration.
Proper citation: Subcellular Anatomy Ontology (RRID:SCR_003486) Copy
A software tool which predicts whether an amino acid substitution or indel has an impact on the biological function of a protein.
Proper citation: PROVEAN (RRID:SCR_002182) Copy
http://tvmouse.compmed.ucdavis.edu/
Educational resource to introduce users to the anatomy, physiology, histology, and pathology of the laboratory mouse, with an emphasis on the Genetically Engineered Mouse (GEM). It provides access to histological images, scanned at high resolution and browsable through Zoomify, movie loops and animations derived from MRI, correlated MRI and histology. It has CNS data but is focused on the whole body, e.g., physiological data is available for the heart in the form of wave patterns, histology, CNS, pathology, magnetic resonance imaging, neoplasms; animation, virtual histology, mouse, correlated imaging, necropsy, whole mouse. It may be useful to neuroscientists by relating brain anatomy to the rest of the body. There is a movie illustrating necropsy of the mouse. A link to a compendium of histological slices of brain neoplasms is provided under the Image Archive link. There is a CNS link under construction for anatomical system, which presumably will include detailed CT imaging. This site still appears to be under construction.
Proper citation: Visible Mouse Project (RRID:SCR_002393) Copy
Registry and results database of federally and privately supported clinical trials conducted in United States and around world. Provides information about purpose of trial, who may participate, locations, and phone numbers for more details. This information should be used in conjunction with advice from health care professionals.Offers information for locating federally and privately supported clinical trials for wide range of diseases and conditions. Research study in human volunteers to answer specific health questions. Interventional trials determine whether experimental treatments or new ways of using known therapies are safe and effective under controlled environments. Observational trials address health issues in large groups of people or populations in natural settings. ClinicalTrials.gov contains trials sponsored by National Institutes of Health, other federal agencies, and private industry. Studies listed in database are conducted in all 50 States and in 178 countries.
Proper citation: ClinicalTrials.gov (RRID:SCR_002309) Copy
http://mialab.mrn.org/software/eegift/index.html
Implements multiple algorithms for independent component analysis and blind source separation of group (and single subject) EEG data. This MATLAB toolbox is compatible with MATLAB 6.5 and higher.
Proper citation: Group ICA Of EEG Toolbox (RRID:SCR_002478) Copy
Generate gene trap insertions using mutagenic polyA trap vectors, followed by sequence tagging to develop a library of mutagenized ES cells freely available to the scientific community. This library is searchable by sequence or key word searches including gene name or symbol, chromosome location, or Gene Ontology (GO) terms. In addition,they offer a custom email alert service in which researchers are able to submit search criteria. Researchers will receive automated e-mail notification of matching gene trap clones as they are entered into the library and database. The resource features the use of complementary second and third generation polyA trap vectors developed by the Stanford lab and the laboratory of Professor Yasumasa Ishida of the Nara Institute of Science and Technology (NAIST) in Japan to mutagenize murine embryonic stem (ES) cells. CMHD gene trap clones are distributed by the Canadian Mouse Mutant Repository(CMMR). Information about ordering, services, and pricing can be found on their web site (http://www.cmmr.ca/services/index.html)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.
Proper citation: Centre for Modeling Human Disease Gene Trap Resource (RRID:SCR_002785) Copy
A National NIH Center for Biomedical Computing that focuses on physics-based simulation of biological structures and provides open access to high quality simulation tools, accurate models and the people behind them. It serves as a repository for models that are published (as well as the associated code) to create a living archive of simulation scholarship. Simtk.org is organized into projects. A project represents a research endeavor, a software package or a collection of documents and publications. Includes sharing of image files, media, references to publications and manuscripts, as well as executables and applications for download and source code. Simulation tools are free to download and space is available for developers to manage, share and disseminate code.
Proper citation: Simtk.org (RRID:SCR_002680) Copy
https://simtk.org/home/foldvillin
An archive of hundreds of all-atom, explicit solvent molecular dynamics simulations that were performed on a set of nine unfolded conformations of a variant of the villin headpiece subdomain (HP-35 NleNle). It includes scripts for accessing the archive of villin trajectories as well as a VMD plug-in for viewing the trajectories. In addition, all starting structures used in the trajectories are also provided. The simulations were generated using a distributed computing method utilizing the symmetric multiprocessing paradigm for individual nodes of the Folding_at_home distributed computing network. The villin trajectories in the archive are divided into two projects: PROJ3036 and PROJ3037. PROJ3036 contains trajectories starting from nine non-folded configurations. PROJ3037 contains trajectories starting from the native (folded) state. Runs 0 through 8 (in PROJ3036) correspond to starting configurations 0 through 8 discussed in the paper in J. Mol. Biol. (2007) 374(3):806-816 (see the publications tab for a full reference), whereas RUN9 uses the same starting configuration as RUN8. Each run contains 100 trajectories (named clone 0-99), each with the same starting configuration but different random velocities. Trajectories vary in their length of time and are subdivided into frames, also known as a generation. Each frame contains around 400 configurational snapshots, or timepoints, of the trajectory, with the last configurational snapshot of frame i corresponding to the first configurational snapshot of generation i+1. The goal is to allow researchers to analyze and benefit from the many trajectories produced through the simulations.
Proper citation: Molecular Simulation Trajectories Archive of a Villin Variant (RRID:SCR_002704) Copy
Gene expression data and maps of mouse central nervous system. Gene expression atlas of developing adult central nervous system in mouse, using in situ hybridization and transgenic mouse techniques. Collection of pictorial gene expression maps of brain and spinal cord of mouse. Provides tools to catalog, map, and electrophysiologically record individual cells. Application of Cre recombinase technologies allows for cell-specific gene manipulation. Transgenic mice created by this project are available to scientific community.
Proper citation: Gene Expression Nervous System Atlas (RRID:SCR_002721) Copy
https://dpcpsi.nih.gov/onr/nrcc
Coordinates nutritional sciences-related research and research training across the National Institutes of Health (NIH) and among Federal Agencies by providing mechanisms to communicate research, research training, policy, and education initiatives. The DNRC facilitates the exchange of information, coordinates workshops and seminars on critical issues, encourages national and international research collaborations, and serves as the NIH primary point of contact for the Department of Health and Human Services (DHHS) and other agencies, departments, and organizations in matters pertaining to nutritional sciences and physical activity. Through its dedicated efforts to promote scientific policy reviews, innovative research, interagency collaboration, and technical advancements, the DNRC strives to define the increasing roles of nutritional sciences and physical activity in health promotion and disease prevention and treatment.
Proper citation: NIH Division of Nutrition Research Coordination (RRID:SCR_001469) Copy
http://www.ncbi.nlm.nih.gov/pmc/
Collection of full text archive of biomedical and life sciences journal literature at U.S. National Institutes of Health National Library of Medicine (NIH/NLM). With PubMed Central, NCBI is taking lead in preserving and maintaining open access to electronic literature. Value of PubMed Central, in addition to its role as an archive, lies in what can be done when data from diverse sources is stored in common format in single repository. All articles in PMC are free (sometimes on a delayed basis). Some journals go beyond free, to Open Access.
Proper citation: PubMed Central (RRID:SCR_004166) Copy
The European resource for the collection, organization and dissemination of data on biological macromolecular structures. In collaboration with the other worldwide Protein Data Bank (wwPDB) partners - the Research Collaboratory for Structural Bioinformatics (RCSB) and BioMagResBank (BMRB) in the USA and the Protein Data Bank of Japan (PDBj) - they work to collate, maintain and provide access to the global repository of macromolecular structure data. The main objectives of the work at PDBe are: * to provide an integrated resource of high-quality macromolecular structures and related data and make it available to the biomedical community via intuitive user interfaces. * to maintain in-house expertise in all the major structure-determination techniques (X-ray, NMR and EM) in order to stay abreast of technical and methodological developments in these fields, and to work with the community on issues of mutual interest (such as data representation, harvesting, formats and standards, or validation of structural data). * to provide high-quality deposition and annotation facilities for structural data as one of the wwPDB deposition sites. Several sophisticated tools are also available for the structural analysis of macromolecules.
Proper citation: PDBe - Protein Data Bank in Europe (RRID:SCR_004312) Copy
http://www.feinsteininstitute.org/Feinstein/Feinstein+HomePage
The Feinstein Institute for Medical Research is the research branch of the North Shore-Long Island Jewish Health System. Biomedical research has been a vital aspect of its two academic medical centers North Shore University Hospital and Long Island Jewish Medical Center since their establishment in the early 1950''s. Through its connection to the hospital system, the Institute bridges the gap between biomedical research and patient care, accessing hundreds of thousands of patients in the health system''s 15 hospitals, four long-term care facilities, three trauma centers, six home health agencies and dozens of outpatient facilities. Institute scientists collaborate with clinicians throughout the system to shed light on basic biological processes underlying disease. This knowledge is used to develop new therapies and diagnostics. Currently, more than 800 scientists and investigators are conducting research in oncology, immunology and inflammation, genetics, psychiatry, neurology, pediatrics, surgery, urology, obstetrics/gynecology and many other specialties. In 2008, the Feinstein received funding from the National Institutes of Health in excess of $28 million, and an additional $10 million from other federal sources. Total annual research funding from all sources exceeded $44 million in 2008. We stand at the threshold of an extraordinary time in medicine. Over the last 100 years, biomedical science has progressed very rapidly. Advances coming from the integration of genomics, proteomics and bioinformatics into the biomedical toolkit hold the promise that this transformation will continue well into the 21st century. The Feinstein Institute for Medical Research is a growing force in research innovation, education and progress.
Proper citation: Feinstein Institute for Medical Research (RRID:SCR_004470) Copy
http://www.mprc.umaryland.edu/mbc.asp
The Maryland Brain Collection (MBC), a resource of the Maryland Psychiatric Research Center (MPRC), is dedicated to promoting research with brain tissue obtained post-mortem from individuals with schizophrenia or related disorders. The primary goal of the MBC is to provide high-quality tissue, along with comprehensive clinical information, for hypothesis-driven research. The MBC is not conceptualized as a Brain Bank with open access but is maintained and funded through collaborative research. The Maryland Brain Collection is managed by researchers at the Maryland Psychiatric Research Center (MPRC). MPRC scientists are dedicated to understanding the causes and improving the treatment of mental illness. The Maryland Brain Collection is associated with the Office of the Chief Medical Examiner for the State of Maryland and other donor sources. MPRC scientists collaborate with scientists from around the world to understand how abnormalities in brain tissue relate to mental illness. The purpose of the MBC is to study the following: Schizophrenia, Bipolar Disorder, Depression, Suicide/Teen suicide, Substance Abuse.
Proper citation: Maryland Brain Collection (RRID:SCR_004384) Copy
http://rarediseasesnetwork.epi.usf.edu/index.htm
The Rare Diseases Clinical Research Network (RDCRN) was created to facilitate collaboration among experts in many different types of rare diseases. Our goal is to contribute to the research and treatment of rare diseases by working together to identify biomarkers for disease risk, disease severity and activity, and clinical outcome, while also encouraging development of new approaches to diagnosis, prevention, and treatment. The Rare Diseases Clinical Research Network (RDCRN) is made up of 19 distinctive consortia that are working in concert to improve availability of rare disease information, treatment, clinical studies, and general awareness for both patients and the medical community. The RDCRN also aims to provide up-to-date information for patients and to assist in connecting patients with advocacy groups, expert doctors, and clinical research opportunities.
Proper citation: Rare Diseases Clinical Research Network (RRID:SCR_004372) Copy
Research consortium to advance scientific research in the primary immune deficiency diseases (PIDD) and: * Assemble and maintain a registry of patients with primary immunodeficiency diseases to provide a minimum estimate of the prevalence of each disorder in the United States. Provide a comprehensive clinical picture of each disorder and act as a resource for clinical and laboratory research. * Establish a multifaceted mentoring program to introduce new investigators into the field and stimulate interest and research in primary immune deficiency diseases. * Establish an advisory/review committee to maintain a cell/DNA Repository of biologic material from well-characterized PIDD patients for the advancement of scientific research USIDNET operates a large database of patient information for your use. The purpose and scope of this project is to assemble and maintain a registry of residents with primary immunodeficiency diseases. The project was started with the Registry of U.S. Residents with Chronic Granulomatous Disease. Since then, the registry has been expanded and now collects data on all primary immunodeficiency disorders. The following are just a few of the diseases housed in the registry: Chronic Granulomatous Disease, Common Variable Immunodeficiency Disease, DiGeorge Anomaly, Hyper IgM Syndrome, Leukocyte Adhesion Defect, Severe Combined Immunodeficiency Disease, Wiskott-Aldrich Syndrome, X-Linked Agammaglobulinemia Physicians who would like to register their patients or access the registry are encouraged to contact Onika Davis or Lamar Hamilton, USIDNET team, at odavis (at) primaryimmune.org, or lhamilton (at) primaryimmune.org
Proper citation: USIDNET: US Immunodeficiency Network (RRID:SCR_004672) Copy
http://em.emory.edu/protect/index.cfm
Recently, our team completed an NINDS-funded, Phase IIa double-blinded, placebo-controlled pilot clinical trial that examined the pharmacokinetics, safety, and activity of progesterone, a steroid found to have powerful neuroprotective effects in multiple animal models of brain injury. Our pilot study demonstrated a 50% reduction in death among severe TBI patients and less disability among moderate TBI patients treated with progesterone. Based on these promising results and supportive preclinical data, we are conducting a large, phase III clinical trial (ProTECT III) to definitively assess the safety and efficacy of this treatment for adults with moderate to severe acute TBI. The study is slated to begin August 2008. WHY Progesterone: Although progresterone is widely considered a sex steroid, it is also a potent neurosteroid. Progesterone is naturally synthesized in the CNS. A large and growing body of animal studies indicate that early administration of progesterone after TBI reduces cerebral edema, neuronal loss, and behavioral deficits in laboratory animals. Certain properties of progesterone make it an ideal therapeutic candidate. First, in contrast to most drugs tested to date, progesterone rapidly enters the brain and reaches equilibrium with the plasma within an hour of administration. Second, unlike other experimental agents, progesterone has a long history of safe use in humans. Finally, the findings of our pilot clinical trial (presented in the Preliminary Data Section, below) indicate that progesterone has consistent and predictable pharmacokinetic properties, is unlikely to produce harm, and may be efficacious for treating acute TBI in humans.
Proper citation: ProTECT (RRID:SCR_004531) Copy
http://krasnow1.gmu.edu/cn3/hippocampus3d/
Data files for a high resolution three dimensional (3D) structure of the rat hippocampus reconstructed from histological sections. The data files (supplementary data for Ropireddy et al., Neurosci., 2012 Mar 15;205:91-111) are being shared on the Windows Live cloud space provided by Microsoft. Downloadable data files include the Nissl histological images, the hippocampus layer tracings that can be visualized alone or superimposed to the corresponding Nissl images, the voxel database coordinates, and the surface rendering VRML files. * Hippocampus Nissl Images: The high resolution histological Nissl images obtained at 16 micrometer inter-slice distance for the Long-Evans rat hippocampus can be downloaded or directly viewed in a browser. This dataset consists of 230 jpeg images that cover the hippocampus from rostral to caudal poles. This image dataset is uploaded in seven parts as rar files. * Hippocampus Layer Tracings: The seven hippocampus layers ''ML, ''GC'', ''HILUS'' in DG and ''LM'', ''RAD'', ''PC'', ''OR'' in CA were segmented (traced) using the Reconstruct tool which can be downloaded from Synapse web. This tool outputs all the tracings for each image in XML format. The XML tracing files for all these seven layers for each of the above Nissl images are zipped into one file and can be downloaded. * Hippocampus VoxelDB: The 3D hippocampus reconstructed is volumetrically transformed into 16 micrometer sized voxels for all the seven layers. Each voxel is reported according to multiple coordinate systems, namely in Cartesian, along the natural hippocampal dimensions, and in reference to the canonical brain planes. The voxel database file is created in ascii format. The single voxel database file was split into three rar archive files. Please note that the three rar archive files should be downloaded and decompressed in a single directory in order to obtain the single voxel data file (Hippocampus-VoxelDB.txt). * 3D Surface Renderings: This is a rar archive file with a single VRML file containing the surface rendering of DG and CA layers. This VRML file can be opened and visualized in any VRML viewer, e.g. the open source software view3dscene. * 3D Hippocampus Movie: This movie contains visualization of the 3D surface renderings of CA (blue) and DG (red) inner and outer boundaries; neuronal embeddings of DG granule and CA pyramidal dendritic arbors; potential synapses between CA3b interneuron axon and pyramidal dendrite, and between CA2 pyramidal axon and CA pyramidal dendrites.
Proper citation: Hippocampus 3D Model (RRID:SCR_005083) Copy
http://www.stanford.edu/group/brainsinsilicon/neurogrid.html
A specialized hardware platform that will perform cortex-scale emulations while offering software-like flexibility. With sixteen 12x14 sq-mm chips (Neurocores) assembled on a 6.5x7.5 sq-in circuit board that can model a slab of cortex with up to 16x256x256 neurons - over a million! The chips are interconnected in a binary tree by 80M spike/sec links. An on-chip RAM (in each Neurocore) and an off-chip RAM (on a daughterboard, not shown) softwire vertical and horizontcal cortical connections, respectively. It provides an affordable option for brain simulations that uses analog computation to emulate ion-channel activity and uses digital communication to softwire synaptic connections. These technologies impose different constraints, because they operate in parallel and in serial, respectively. Analog computation constrains the number of distinct ion-channel populations that can be simulatedunlike digital computation, which simply takes longer to run bigger simulations. Digital communication constrains the number of synaptic connections that can be activated per secondunlike analog communication, which simply sums additional inputs onto the same wire. Working within these constraints, Neurogrid achieves its goal of simulating multiple cortical areas in real-time by making judicious choices.
Proper citation: Neurogrid (RRID:SCR_005024) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.