Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   


http://xldb.fc.ul.pt/biotools/rebil/ssm/

FuSSiMeG is being discontinued, may not be working properly. Please use our new tool ProteinOn. Functional Semantic Similarity Measure between Gene Products (FuSSiMeG) provides a functional similarity measure between two proteins using the semantic similarity between the GO terms annotated with the proteins. Platform: Online tool

Proper citation: FuSSiMeG: Functional Semantic Similarity Measure between Gene-Products (RRID:SCR_005738) Copy   


http://omicslab.genetics.ac.cn/GOEAST/

Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) is a web based software toolkit providing easy to use, visualizable, comprehensive and unbiased Gene Ontology (GO) analysis for high-throughput experimental results, especially for results from microarray hybridization experiments. The main function of GOEAST is to identify significantly enriched GO terms among give lists of genes using accurate statistical methods. Compared with available GO analysis tools, GOEAST has the following unique features: * GOEAST supports analysis for data from various resources, such as expression data obtained using Affymetrix, illumina, Agilent or customized microarray platforms. GOEAST also supports non-microarray based experimental data. The web-based feature makes GOEAST very user friendly; users only have to provide a list of genes in correct formats. * GOEAST provides visualizable analysis results, by generating graphs exhibiting enriched GO terms as well as their relationships in the whole GO hierarchy. * Note that GOEAST generates separate graph for each of the three GO categories, namely biological process, molecular function and cellular component. * GOEAST allows comparison of results from multiple experiments (see Multi-GOEAST tool). The displayed color of each GO term node in graphs generated by Multi-GOEAST is the combination of different colors used in individual GOEAST analysis. Platform: Online tool

Proper citation: GOEAST - Gene Ontology Enrichment Analysis Software Toolkit (RRID:SCR_006580) Copy   


http://cbl-gorilla.cs.technion.ac.il/

A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.

Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy   


  • RRID:SCR_008535

    This resource has 100+ mentions.

http://gostat.wehi.edu.au

GOstat is a tool that allows you to find statistically overrepresented Gene Ontologies within a group of genes. The Gene-Ontology database (GO: http://www.geneontology.org) provides a useful tool to annotate and analyze the function of large numbers of genes. Modern experimental techniques, as e.g. DNA microarrays, often result in long lists of genes. To learn about the biology in this kind of data it is desirable to find functional annotation or Gene-Ontology groups which are highly represented in the data. This program (GOstat) should help in the analysis of such lists and will provide statistics about the GO terms contained in the data and sort the GO annotations giving the most representative GO terms first. Run GOstat: * Go to search form - Computes GO statistics of a list of genes selected from a microarray. * GOstat Display - You can store results from a previously run and view them here, either by uploading them as a file or putting them on a selected URL. * Upload Custom GO Annotations - This allows you to upload your own GO annotation database and use it with GOstat. Variants of GOstat: * Rank GOstat - Takes input from all genes on microarray instead of using a fixed cutoff and uses ranks using a Wilcoxon test or either ranks or pvalues to score GOs using Kolmogorov-Smirnov statistics. * Gene Abundance GOstats - Takes input from all genes on microarray and sums up the gene abundances for each GO to compute statistics. * Two list GOstat - Compares GO statistics in two independent lists of genes, not necessarily one of them being the complete list the other list is sampled from. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GOstat (RRID:SCR_008535) Copy   


  • RRID:SCR_006385

    This resource has 1+ mentions.

http://gtlinker.cnb.csic.es/

Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.

Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy   


  • RRID:SCR_006406

    This resource has 500+ mentions.

http://bioinformatics.intec.ugent.be/magic/

Web based interface for exploring and analyzing a comprehensive maize-specific cross-platform expression compendium. This compendium was constructed by collecting, homogenizing and formally annotating publicly available microarrays from Gene Expression Omnibus (GEO), and ArrayExpress.

Proper citation: Magic (RRID:SCR_006406) Copy   


http://mendel.stanford.edu/sidowlab/downloads/quest/

A Kernel Density Estimator-based package for analysis of massively parallel sequencing data from chromatin immunoprecipitation (ChIP-seq) experiments.

Proper citation: Quantitative Enrichment of Sequence Tags (RRID:SCR_004065) Copy   


  • RRID:SCR_008855

https://github.com/manveru/tkgo

Tk-GO is a GUI wrapping the basic functions of the GO AppHandle library from BDGP. GO terms are presented in an explorer-like browser, and behavior can be configured by altering Perl scripts. All available documentation is included in the download. Tk-GO uses the GO database (connects directly to the BDGP database by default) but is user-configurable. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Tk-GO (RRID:SCR_008855) Copy   


  • RRID:SCR_008858

    This resource has 100+ mentions.

http://spotfire.tibco.com/

The Spotfire Gene Ontology Advantage Application integrates GO annotations with gene expression analysis in Spotfire DecisionSite for Functional Genomics. Researchers can select a subset of genes in DecisionSite visualizations and display their distribution in the Gene Ontology hierarchy. Similarly, selection of any process, function or cellular location in the Gene Ontology hierarchy automatically marks the corresponding genes in DecisionSite visualizations. Platform: Windows compatible

Proper citation: Spotfire (RRID:SCR_008858) Copy   


  • RRID:SCR_007009

    This resource has 1+ mentions.

http://www.softpedia.com/get/Science-CAD/DynGO.shtml

DynGO is a client-server application that provides several advanced functionalities in addition to the standard browsing capability. DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations (which requires more disk and memory to handle the semantic retrieval). The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. Requirements: Java Platform: Windows compatible, Linux compatible, Unix compatible

Proper citation: DynGO (RRID:SCR_007009) Copy   


  • RRID:SCR_005721

    This resource has 1+ mentions.

http://search.cpan.org/~cmungall/go-db-perl/

Software resource that extends the functionality of go-perl (on which it depends) with GO Database access functionality. go-db-perl comes bundled with various scripts and a shell command line interface that can be used as standalone tools. Installation is more involved than for go-perl; you will need a MySQL database plus the requisite DBI and DBD Perl modules. Full installation instructions are included in the download. go-db-perl is in use both to drive AmiGO and internally within Ensembl. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: go-db-perl (RRID:SCR_005721) Copy   


  • RRID:SCR_005685

    This resource has 50+ mentions.

http://manatee.sourceforge.net/

Manatee is a web-based gene evaluation and genome annotation tool; Manatee can store and view annotation for prokaryotic and eukaryotic genomes. The Manatee interface allows biologists to quickly identify genes and make high quality functional assignments, such as GO classifications, using search data, paralogous families, and annotation suggestions generated from automated analysis. Manatee can be downloaded and installed to run under the CGI area of a web server, such as Apache. Platform: Online tool, Linux compatible, Solaris

Proper citation: Manatee (RRID:SCR_005685) Copy   


  • RRID:SCR_005730

    This resource has 10+ mentions.

http://search.cpan.org/~cmungall/go-perl/

go-perl is a set of Perl modules for parsing, manipulating and exporting ontologies and annotations. It includes parsers for the OBO and GO gene association file formats. It has a graph-based object model with methods for graph traversal. For more details, see the documentation included with the modules. go-perl comes bundled with XSL (Extensible Stylesheet Language) transforms (which can also be used independently of Perl, provided you have files in OBO-XML format), as well as scripts that can be used as standalone tools. Installation should be simple, provided you have some experience with Perl and CPAN; see the INSTALL file for details. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: go-perl (RRID:SCR_005730) Copy   


http://www.psb.ugent.be/cbd/papers/BiNGO/Home.html

The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape''''s versatile visualization environment to produce an intuitive and customizable visual representation of the results. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: BiNGO: A Biological Networks Gene Ontology tool (RRID:SCR_005736) Copy   


  • RRID:SCR_017519

    This resource has 1+ mentions.

http://www.informatics.jax.org/function.shtml

MGI GO project provides functional annotations for mouse gene products using Gene Ontology. Functional annotation using Gene Ontology (GO).

Proper citation: Functional Annotation (RRID:SCR_017519) Copy   


  • RRID:SCR_005314

    This resource has 1+ mentions.

http://www.ebi.ac.uk/Rebholz-srv/ebimed/

A web application that combines Information Retrieval and Extraction from Medline. EBIMed finds Medline abstracts in the same way PubMed does. Then it goes a step beyond and analyses them to offer a complete overview on associations between UniProt protein/gene names, GO annotations, Drugs and Species. The results are shown in a table that displays all the associations and links to the sentences that support them and to the original abstracts. By selecting relevant sentences and highlighting the biomedical terminology EBIMed enhances your ability to acquire knowledge, relate facts, discover implications and, overall, have a good overview economizing the effort in reading.

Proper citation: EBIMed (RRID:SCR_005314) Copy   


  • RRID:SCR_005323

    This resource has 1+ mentions.

http://www.coremine.com/medical/#search

Service to access comprehensive information on diseases, drugs, treatments and medical biology. It is ideal for those seeking an overview of a complex subject while allowing the possibility to drill down to specific details. Search results are presented in a dashboard format comprized of panels containing various categories of information ranging from introductory sources to the latest scientific articles.

Proper citation: Coremine Medical (RRID:SCR_005323) Copy   


  • RRID:SCR_002829

    This resource has 500+ mentions.

http://www.gramene.org

Curated, open-source, integrated data resource for comparative functional genomics in crops and model plant species to facilitate the study of cross-species comparisons using information generated from projects supported by public funds. It currently hosts annotated whole genomes in over two dozen plant species and partial assemblies for almost a dozen wild rice species in the Ensembl browser, genetic and physical maps with genes, ESTs and QTLs locations, genetic diversity data sets, structure-function analysis of proteins, plant pathways databases (BioCyc and Plant Reactome platforms), and descriptions of phenotypic traits and mutations. The web-based displays for phenotypes include the Genes and Quantitative Trait Loci (QTL) modules. Sequence based relationships are displayed in the Genomes module using the genome browser adapted from Ensembl, in the Maps module using the comparative map viewer (CMap) from GMOD, and in the Proteins module displays. BLAST is used to search for similar sequences. Literature supporting all the above data is organized in the Literature database. In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data. Additionally you can access Gramene through an FTP site.

Proper citation: Gramene (RRID:SCR_002829) Copy   


https://omictools.com/ecgene-tool

Database of functional annotation for alternatively spliced genes. It uses a gene-modeling algorithm that combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. It contains genome, mRNA, and EST sequence data, as well as a genome browser application. Organisms included in the database are human, dog, chicken, fruit fly, mouse, rhesus, rat, worm, and zebrafish. Annotation is provided for the whole transcriptome, not just the alternatively spliced genes. Several viewers and applications are provided that are useful for the analysis of the transcript structure and gene expression. The summary viewer shows the gene summary and the essence of other annotation programs. The genome browser and the transcript viewer are available for comparing the gene structure of splice variants. Changes in the functional domains by alternative splicing can be seen at a glance in the transcript viewer. Two unique ways of analyzing gene expression is also provided. The SAGE tags deduced from the assembled transcripts are used to delineate quantitative expression patterns from SAGE libraries available publicly. The cDNA libraries of EST sequences in each cluster are used to infer qualitative expression patterns.

Proper citation: ECgene: Gene Modeling with Alternative Splicing (RRID:SCR_007634) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X