Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nitrc.org/projects/laplacebeltrami/
A filter which allows the Laplace-Beltrami operator to determine surface harmonics in terms of PointData at each vertex. It determines the requested N most significant harmonics of a surface.
Proper citation: Laplace Beltrami Filter on QuadEdge Meshes (RRID:SCR_014133) Copy
http://www.nitrc.org/projects/ap_seg_2013_nih/
A MATLAB GUI for segmenting and quantifying PET images with multi-focal and diffuse uptakes. It imports a PET image and allows the user to draw region of interests (ROIs) in 2D or 3D to roughly separate the object of interest from the background. The areas are then segmented using a PET image segmentation method based on Affinity Propagation clustering to cluster the image intensities into meaningful groups. For quantification, the Standardized Uptake Value measurements of the binary or the user defined ROI are SUVmax, SUVmean, and Volume (mm^3) and can be exported into an excel sheet.
Proper citation: NIH-CIDI Segmentation of PET Images based on Affinity Propagation Clustering (RRID:SCR_014151) Copy
Project portal dedicated to understand animal and machine intelligence and repository of data and tools. Suite of tools to analyze and graph imaging data. Image and data repository for large, publicly available neuro-specific data files and images. Contains tools for analytics, databases, cloud computing, and Web-services applied to both big neuroimages and big neurographs.
Proper citation: neurodata (RRID:SCR_014264) Copy
Software Python package for simulation and analysis of neuronal networks using the NEURON simulator.Used to facilitate development, parallel simulation, analysis, and optimization of biological neuronal networks.
Proper citation: NetPyNE (RRID:SCR_014758) Copy
Open source, cross platform library that provides developers with extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK builds on proven, spatially oriented architecture for processing, segmentation, and registration of scientific images in two, three, or more dimensions.
Proper citation: Insight Segmentation and Registration Toolkit (RRID:SCR_001149) Copy
http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
A spatial normalization and atlas construction toolkit optimized for examining white matter morphometry using DTI data with special care taken to respect the tensorial nature of the data. It implements a state-of-the-art registration algorithm that drives the alignment of white matter (WM) tracts by matching the orientation of the underlying fiber bundle at each voxel. The algorithm has been shown to both improve WM tract alignment and to enhance the power of statistical inference in clinical settings. A 2011 study published in NeuroImage ranks DTI-TK the top-performing tool in its class. Key features include: * open standard-based file IO support: NIfTI format for scalar, vector and tensor image volumes * tool chains for manipulating tensor image volumes: resampling, smoothing, warping, registration & visualization * pipelines for WM morphometry: spatial normalization & atlas construction for population-based studies * built-in cluster-computing support: support for open source Sun Grid Engine (SGE) * Interoperability with other popular DTI tools: AFNI, Camino, FSL & DTIStudio * Interoperability with ITK-SNAP: support multi-modal visualization and segmentation
Proper citation: Diffusion Tensor Imaging ToolKit (RRID:SCR_001642) Copy
http://neuroimage.usc.edu/brainstorm/
Software as collaborative, open source application dedicated to analysis of brain recordings: MEG, EEG, fNIRS, ECoG, depth electrodes and animal invasive neurophysiology. User-Friendly Application for MEG/EEG Analysis.
Proper citation: Brainstorm (RRID:SCR_001761) Copy
http://www.nitrc.org/projects/itk-snap/
Open source interactive software application for three dimentional medical images, manual delineation of anatomical regions of interest, and performing automatic image segmentation. Used for delineating anatomical structures and regions in MRI, CT and other 3D biomedical imaging data.WebGL-based viewer for volumetric data. It is capable of displaying arbitrary (non axis-aligned) cross-sectional views of volumetric data, as well as 3-D meshes and line-segment based models (skeletons).
Proper citation: ITK-SNAP (RRID:SCR_002010) Copy
https://github.com/trendscenter/gift
Software MATLAB toolbox which implements multiple algorithms for independent component analysis and blind source separation of group (and single subject) functional magnetic resonance imaging data. GIFT works on MATLAB 6.5 and higher. Many ICA algorithms were generously contributed by Dr. Andrzej Cichocki.
Proper citation: Group ICA of fMRI Toolbox (RRID:SCR_001953) Copy
http://www.loni.usc.edu/Software/MultiPhase-SEG
A segmentation software that employs the implementation of the active contours without edges level set based segmentation model. Its features include: segmentation of three-dimensional brain volumes into two or more regions (for example, regions could be WM, GM, and CSF), visualization of surfaces representing boundaries of different brain regions, and being written in Matlab with the ability to run on any platform with Matlab installed.
Proper citation: MultiPhase-SEG (RRID:SCR_008275) Copy
http://www.loni.usc.edu/Software/DSM
The DualSurfaceMin is a C++ implementation of the fully automatic dual surface minimization (DSM) algorithm for the optimization of deformable surfaces. The method is developed for automatic surface extraction from noisy volumetric images. Its features include: global DSM, DSM-OS, and DSM-IS algorithms for automatic surface extraction from volumetric images using deformable simplex meshes; support for the VRML and OFF formats; output pf both triangulated and simplex meshes; and support for the raw and Analyze 7.5 image formats.
Proper citation: DualSurfaceMin (RRID:SCR_008278) Copy
http://loni.usc.edu/Software/SVT
Software tool for determining the statistically significant regions of activation in single or multi-subject human brain functional studies. It can be also applied to structural brain data for analyzing developmental, dementia and other changes of anatomy over time. This package was originally developed to work on Sun SPARC and SGI stations using the "C" language compiler provided by Sun/SGI as part of the standard system software.
Proper citation: Sub-Volume Thresholding Analysis (RRID:SCR_008272) Copy
http://www.slicer.org/slicerWiki/index.php/Slicer3:Module:Rician_Noise_Removal
Two Slicer3 modules removing rician noise in diffusion tensor MRI
Proper citation: Slicer3 Module Rician noise filter (RRID:SCR_009614) Copy
http://www.loni.usc.edu/Software/BrainParser
Software that uses a novel statistical-learning technique to segment brain regions of interest (ROIs) based on a training set of data and generates 3D MRI volumes. The software comes pre-trained on a provided data set but can be retrained to work with your desired regions of interest.
Proper citation: LONI Brain Parser (RRID:SCR_009572) Copy
http://neuralensemble.org/trac/OpenElectrophy
Software Python module for electrophysiology data analysis.
Proper citation: OpenElectrophy (RRID:SCR_000819) Copy
http://mialab.mrn.org/software/eegift/index.html
Implements multiple algorithms for independent component analysis and blind source separation of group (and single subject) EEG data. This MATLAB toolbox is compatible with MATLAB 6.5 and higher.
Proper citation: Group ICA Of EEG Toolbox (RRID:SCR_002478) Copy
https://github.com/UCSFBiomagneticImagingLab/nutmeg
Software MEG/EEG analysis toolbox for reconstructing neural activation and overlaying it onto structural MR images. Toolbox runs under MATLAB in conjunction with SPM2 and can be used with Linux/UNIX, Mac OS X, and Windows platforms.
Proper citation: NUTMEG (RRID:SCR_002748) Copy
http://bmsr.usc.edu/software/eons/
Modeling platform to study the basic interactions between synaptic elements that allows the user to study qualitatively, and also quantitatively the relative contributions of diverse mechanisms underlying synaptic efficacy: the relevance of each and every element that comprises a synapse, the interactions between these components and their subcellular distribution, as well as the influence of synaptic geometry (presynaptic terminal, cleft and postsynaptic density). This platform consists of a graphical interface in which elements that comprise a single glutamatergic synapse (both pre- and post-synaptically), their behavior as well as the underlying synaptic geometry can be modified. For example, EONS offers the ability to study the effect of voltage-gated calcium channels density and distribution, the number and location of receptors and more. EONS is a parametric model of a generic glutamatergic synapse that takes into account pre-synaptic mechanisms, such as calcium buffering and diffusion, neurotransmitter release, diffusion and uptake in the cleft, and postsynaptic elements, such as ionotropic AMPA and NMDA receptors, their distribution and synaptic geometry, as well as metabotropic glutamate receptors. There are no complicated equations to write: all the models are predefined. This version is a great tool for first time users and students interested in learning about synapses, as well as for studying geometry and distribution hypotheses in a 2D rectangular geometry. System Requirements: EONS V1.2 is a Windows program but can be also successfully installed and run on Mac and Linux.
Proper citation: EONS (RRID:SCR_002979) Copy
Software platform designed to facilitate common management and productivity tasks for neuroimaging and associated data.
Proper citation: XNAT - The Extensible Neuroimaging Archive Toolkit (RRID:SCR_003048) Copy
https://bioimagesuiteweb.github.io/webapp/index.html
Web applications for analysis of multimodal/multispecies neuroimaging data. Image analysis software package. Has facilities for DTI and fMRI processing. Capabilities for both neuro/cardiac and abdominal image analysis and visualization. Many packages are extensible, and provide functionality for image visualization and registration, surface editing, cardiac 4D multi-slice editing, diffusion tensor image processing, mouse segmentation and registration, and much more. Can be intergrated with other biomedical image processing software, such as FSL, AFNI, and SPM.
Proper citation: BioImage Suite (RRID:SCR_002986) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.