Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://omictools.com/l2l-tool
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.
Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
Natural Antisense Transcripts (NATs), a kind of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and/or pathological processes. PlantNATsDB (Plant Natural Antisense Transcripts DataBase) is a platform for annotating and discovering NATs by integrating various data sources involving approximately 2 million NAT pairs in 69 plant species. PlantNATsDB also provides an integrative, interactive and information-rich web graphical interface to display multidimensional data, and facilitate plant research community and the discovery of functional NATs. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. A ''''Gene Set Analysis'''' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs.
Proper citation: PlantNATsDB - Plant Natural Antisense Transcripts DataBase (RRID:SCR_013278) Copy
http://tools.dice-database.org/GOnet/)
Web tool for interactive Gene Ontology analysis of any biological data sources resulting in gene or protein lists.
Proper citation: GOnet (RRID:SCR_018977) Copy
Evidence based, expert curated knowledge base for synapse. Universal reference for synapse research and online analysis platform for interpretation of omics data. Interactive knowledge base that accumulates available research about synapse biology using Gene Ontology annotations to novel ontology terms.
Proper citation: SynGO (RRID:SCR_017330) Copy
http://bc02.iis.sinica.edu.tw/gobu/manual/index.html
Gene Ontology Browsing Utility (GOBU) (GOBU) is a Java-based software program for integrating biological annotation catalogs under an extendable software architecture. Users may interact with the Gene Ontology and user-defined hierarchy data of genes, and then use its plugins to (and not limited to) (1) browse the GO hierarchy with user defined data, (2) browse GO-oriented expression levels in the user data, (3) compute GO enrichment, and/or (4) customize data reporting. A set of classes and utility functions has been established so that a customized program can be made as a plugin or a command-line tool that programmically manipulate the Gene Ontology and specified user data. See the source code repository for examples. Reference Lin WD, Chen YC, Ho JM, Hsiao CD. GOBU: Toward an Integration Interface for Biological Objects. Journal of Information Science and Engineering. 2006 22(1):19-29. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Gene Ontology Browsing Utility (GOBU) (RRID:SCR_005662) Copy
http://owlapi.sourceforge.net/
The OWL API is a Java API and reference implementation for creating, manipulating and serializing OWL Ontologies. The latest version of the API is focused towards OWL 2. The OWLAPI underpins ontology browsing and editing tools and platforms such as SWOOP and Protege4. Note that this API, or any other OWL-based API, can be used without an integrated OWL parser if you download a pre-converted OWL file generated from OBO. See OBO Ontologies List for all OBO ontologies converted to OWL (we do not list the full complement of OWL-based APIs here, only those of direct relevance to GO). The OWL API includes the following components: * An API for OWL 2 and an efficient in-memory reference implementation * RDF/XML parser and writer * OWL/XML parser and writer * OWL Functional Syntax parser and writer * Turtle parser and writer * KRSS parser * OBO Flat file format parser * Reasoner interfaces for working with reasoners such as FaCT++, HermiT, Pellet and Racer Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: OWL API (RRID:SCR_005734) Copy
http://mendel.stanford.edu/sidowlab/downloads/quest/
A Kernel Density Estimator-based package for analysis of massively parallel sequencing data from chromatin immunoprecipitation (ChIP-seq) experiments.
Proper citation: Quantitative Enrichment of Sequence Tags (RRID:SCR_004065) Copy
http://purl.bioontology.org/ontology/NIGO
Ontology that is a subset of GO directed for neurological and immunological systems. It was created by clipping those GO terms that are not associated to any gene in human, rat and mouse, and by clipping terms not found to be relevant to the neural and/or immune domains.
Proper citation: Neural-Immune Gene Ontology (RRID:SCR_004120) Copy
A collaborative ontology for the definition of sequence features used in biological sequence annotation. SO was initially developed by the Gene Ontology Consortium. Contributors to SO include the GMOD community, model organism database groups such as WormBase, FlyBase, Mouse Genome Informatics group, and institutes such as the Sanger Institute and the EBI. Input to SO is welcomed from the sequence annotation community. The OBO revision is available here: http://sourceforge.net/p/song/svn/HEAD/tree/ SO includes different kinds of features which can be located on the sequence. Biological features are those which are defined by their disposition to be involved in a biological process. Biomaterial features are those which are intended for use in an experiment such as aptamer and PCR_product. There are also experimental features which are the result of an experiment. SO also provides a rich set of attributes to describe these features such as polycistronic and maternally imprinted. The Sequence Ontologies use the OBO flat file format specification version 1.2, developed by the Gene Ontology Consortium. The ontology is also available in OWL from Open Biomedical Ontologies. This is updated nightly and may be slightly out of sync with the current obo file. An OWL version of the ontology is also available. The resolvable URI for the current version of SO is http://purl.obolibrary.org/obo/so.owl.
Proper citation: SO (RRID:SCR_004374) Copy
https://github.com/manveru/tkgo
Tk-GO is a GUI wrapping the basic functions of the GO AppHandle library from BDGP. GO terms are presented in an explorer-like browser, and behavior can be configured by altering Perl scripts. All available documentation is included in the download. Tk-GO uses the GO database (connects directly to the BDGP database by default) but is user-configurable. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Tk-GO (RRID:SCR_008855) Copy
The Spotfire Gene Ontology Advantage Application integrates GO annotations with gene expression analysis in Spotfire DecisionSite for Functional Genomics. Researchers can select a subset of genes in DecisionSite visualizations and display their distribution in the Gene Ontology hierarchy. Similarly, selection of any process, function or cellular location in the Gene Ontology hierarchy automatically marks the corresponding genes in DecisionSite visualizations. Platform: Windows compatible
Proper citation: Spotfire (RRID:SCR_008858) Copy
http://www.softpedia.com/get/Science-CAD/DynGO.shtml
DynGO is a client-server application that provides several advanced functionalities in addition to the standard browsing capability. DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations (which requires more disk and memory to handle the semantic retrieval). The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. Requirements: Java Platform: Windows compatible, Linux compatible, Unix compatible
Proper citation: DynGO (RRID:SCR_007009) Copy
A collaboration involving developers of science-based ontologies who are establishing a set of principles for ontology development with the goal of creating a suite of orthogonal interoperable reference ontologies in the biomedical domain. In addition to a listing of OBO ontologies, this site provides a statement of the OBO Foundry principles, discussion fora, technical infrastructure, and other services to facilitate ontology development. Feedback is welcome and participation encouraged.
Proper citation: OBO (RRID:SCR_007083) Copy
http://search.cpan.org/~cmungall/go-db-perl/
Software resource that extends the functionality of go-perl (on which it depends) with GO Database access functionality. go-db-perl comes bundled with various scripts and a shell command line interface that can be used as standalone tools. Installation is more involved than for go-perl; you will need a MySQL database plus the requisite DBI and DBD Perl modules. Full installation instructions are included in the download. go-db-perl is in use both to drive AmiGO and internally within Ensembl. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: go-db-perl (RRID:SCR_005721) Copy
http://manatee.sourceforge.net/
Manatee is a web-based gene evaluation and genome annotation tool; Manatee can store and view annotation for prokaryotic and eukaryotic genomes. The Manatee interface allows biologists to quickly identify genes and make high quality functional assignments, such as GO classifications, using search data, paralogous families, and annotation suggestions generated from automated analysis. Manatee can be downloaded and installed to run under the CGI area of a web server, such as Apache. Platform: Online tool, Linux compatible, Solaris
Proper citation: Manatee (RRID:SCR_005685) Copy
http://search.cpan.org/~cmungall/go-perl/
go-perl is a set of Perl modules for parsing, manipulating and exporting ontologies and annotations. It includes parsers for the OBO and GO gene association file formats. It has a graph-based object model with methods for graph traversal. For more details, see the documentation included with the modules. go-perl comes bundled with XSL (Extensible Stylesheet Language) transforms (which can also be used independently of Perl, provided you have files in OBO-XML format), as well as scripts that can be used as standalone tools. Installation should be simple, provided you have some experience with Perl and CPAN; see the INSTALL file for details. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: go-perl (RRID:SCR_005730) Copy
http://www.psb.ugent.be/cbd/papers/BiNGO/Home.html
The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape''''s versatile visualization environment to produce an intuitive and customizable visual representation of the results. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: BiNGO: A Biological Networks Gene Ontology tool (RRID:SCR_005736) Copy
http://purl.bioontology.org/ontology/GO-EXT
An extension of the Gene Ontology.
Proper citation: Gene Ontology Extension (RRID:SCR_010327) Copy
http://cellfinder.de/about/ontology/
Structured vocabulary to organize cell-associated data and to place these data in clearly defined semantic relations to other biological facts. It describes cell types, their properties and origin and links this information to other existing ontologies like the Cell Ontology (CL), Foundational Model of Anatomy (FMA), Gene Ontology (GO), Mouse Anatomy and others using the top-level ontology BioTop.
Proper citation: CELDA Ontology (RRID:SCR_001601) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.