Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
This toolbox is an EEGLAB plugin for performing Measure Projection Analysis. Measure Projection Analysis (MPA) is a novel probabilistic multi-subject inference method that overcomes EEG Independent Component (IC) clustering issues by abandoning the notion of distinct IC clusters. Instead, it searches voxel by voxel for brain regions having event-related IC process dynamics that exhibit statistically significant consistency across subjects and/or sessions as quantified by the values of various EEG measures. Local-mean EEG measure values are then assigned to all such locations based on a probabilistic model of IC localization error and inter-subject anatomical and functional differences.
Proper citation: Measure Projection Toolbox (RRID:SCR_002429) Copy
Software Python package for working with DICOM files, made for inspecting and modifying DICOM data in an easy pythonic way. The modifications can be written again to a new file. As a pure python package, it should run anywhere python runs without any other requirements.
Proper citation: pydicom (RRID:SCR_002573) Copy
http://www.nitrc.org/projects/gppi/
An automated toolbox for a generalized form of psychophysiological interactions for SPM and FSFAST. The automated toolbox can do the following: (a1) produce identical results to the current implementation in SPM (a2) use the current implementation of PPI in SPM but using the regional mean instead of the eigenvariate (a3) use a generalized form that allows a PPI for each task to be in the same model using either the regional mean of eigenvariate (b) create the model using the output of one of the (a) options and the first level design (c) estimate the model (/results directory) (d) compute the contrasts specified.
Proper citation: Generalized PPI Toolbox (RRID:SCR_009489) Copy
MATLAB toolbox for deep-brain-stimulation (DBS) electrode reconstructions and visualizations based on postoperative MRI and computed tomography (CT) imaging. The toolbox also facilitates visualization of localization results in 2D/3D, analysis of DBS-electrode placement's effects on clinical results, simulation of DBS stimulations, diffusion tensor imaging (DTI) based connectivity estimates, and fiber-tracking from the VAT to other brain regions (connectomic surgery).
Proper citation: LEAD-DBS (RRID:SCR_002915) Copy
http://cmic.cs.ucl.ac.uk/mig/index.php?n=Tutorial.NODDImatlab
This MATLAB toolbox implements a data fitting routine for Neurite Orientation Dispersion and Density Imaging (NODDI). NODDI is a new diffusion MRI technique for imaging brain tissue microstructure. Compared to DTI, it has the advantage of providing measures of tissue microstructure that are much more direct and hence more specific. It achieves this by adopting the model-based strategy which relates the signals from diffusion MRI to geometric models of tissue microstructure. In contrast to typical model-based techniques, NODDI is much more clinically feasible and can be acquired on standard MR scanners with an imaging time comparable to DTI.
Proper citation: NODDI Matlab Toolbox (RRID:SCR_006826) Copy
http://www.nitrc.org/projects/dcm2nii/
A tool for converting images from the complicated formats used by scanner manufacturers (DICOM, PAR/REC) to the NIfTI format used by various scientific tools. dcm2nii works for all modalities (CT, MRI, PET, SPECT) and sequence types.
Proper citation: dcm2nii (RRID:SCR_014099) Copy
http://iso2mesh.sourceforge.net/
A Matlab / Octave-based mesh generation toolbox designed for easy creation of high quality surface and tetrahedral meshes from 3D volumetric images. It contains a rich set of mesh processing scripts/programs, functioning independently or interfacing with external free meshing utilities. Iso2mesh toolbox can operate directly on 3D binary, segmented or gray-scale images, such as those from MRI or CT scans, making it particularly suitable for multi-modality medical imaging data analysis or multi-physics modeling.
Proper citation: iso2mesh (RRID:SCR_013202) Copy
http://www.nitrc.org/projects/dti-denoising/
A Matlab package which contains six denoising filters and a noise estimation method for 4D DWI. The package includes nonlocal means, local PCA and Oracle DCT methods. Based on image redundancy and/or sparsity, the proposed filters provide efficient denoising while preserving fine structures.
Proper citation: DTI denoising (RRID:SCR_014102) Copy
https://www.nitrc.org/projects/fmridatacenter/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 25, 2013 Public curated repository of peer reviewed fMRI studies and their underlying data. This Web-accessible database has data mining capabilities and the means to deliver requested data to the user (via Web, CD, or digital tape). Datasets available: 107 NOTE: The fMRIDC is down temporarily while it moves to a new home at UCLA. Check back again in late Jan 2013! The goal of the Center is to help speed the progress and the understanding of cognitive processes and the neural substrates that underlie them by: * Providing a publicly accessible repository of peer-reviewed fMRI studies. * Providing all data necessary to interpret, analyze, and replicate these fMRI studies. * Provide training for both the academic and professional communities. The Center will accept data from those researchers who are publishing fMRI imaging articles in peer-reviewed journals. The goal is to serve the entire fMRI community.
Proper citation: fMRI Data Center (RRID:SCR_007278) Copy
National genetics data repository facilitating access to genotypic and phenotypic data for Alzheimer's disease (AD). Data include GWAS, whole genome (WGS) and whole exome (WES), expression, RNA Seq, and CHIP Seq analyses. Data for the Alzheimer’s Disease Sequencing Project (ADSP) are available through a partnership with dbGaP (ADSP at dbGaP). Repository for many types of data generated from NIA supported grants and/or NIA funded biological samples. Data are deposited at NIAGADS or NIA-approved sites. Genetic Data and associated Phenotypic Data are available to qualified investigators in scientific community for secondary analysis.
Proper citation: National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) (RRID:SCR_007314) Copy
http://www.neurolens.org/NeuroLens/
An integrated environment for the analysis and visualization of functional neuroimages. It is intended to provide extremely fast and flexible image processing, via an intuitive user interface that encourages experimentation with analysis parameters and detailed inspection of both raw image data and processing results. All processing operations in NeuroLens are built around a Plugin architecture, making it easy to extend its functionality. NeuroLens runs on Apple computers based on the G4, G5, or Intel chipsets and running MacOSX 10.4 (Tiger) or later. It is available free for academic and non-profit research use. * Operating System: MacOS * Programming Language: Objective C * Supported Data Format: AFNI BRIK, ANALYZE, COR, DICOM, MGH/MGZ, MINC, Other Format
Proper citation: NeuroLens (RRID:SCR_007372) Copy
http://biosig.sourceforge.net/
Software library for processing of electroencephalogram (EEG) and other biomedical signals like electroencephalogram (EEG), electrocorticogram (ECoG), electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), respiration, and so on. Biosig contains tools for quality control, artifact processing, time series analysis, feature extraction, classification and machine learning, and tools for statistical analysis. Many tools are able to handle data with missing values (statistics, time series analysis, machine learning). Another feature is that more then 40 different data formats are supported, and a number of converters for EEG,, ECG and polysomnography are provided. Biosig has been widely used for scientific research on EEG-based BraiN-Computer Interfaces (BCI), sleep research, and ECG and HRV analysis. It provides software interfaces several programming languages (C, C++, Matlab/Octave, Python), and it provides also an interactive viewing and scoring software for adding, and editing of annotations, markers and events.
Proper citation: BioSig: An Imaging Bioinformatics System for Phenotypic Analysis (RRID:SCR_008428) Copy
An information extracting and processing package for biological literature that can be used online or installed locally via a downloadable software package, http://www.textpresso.org/downloads.html Textpresso's two major elements are (1) access to full text, so that entire articles can be searched, and (2) introduction of categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., methods, etc). A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. The Textpresso project serves the biological and biomedical research community by providing: * Full text literature searches of model organism research and subject-specific articles at individual sites. Major elements of these search engines are (1) access to full text, so that the entire content of articles can be searched, and (2) search capabilities using categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or identify one (e.g., cell, gene, allele, etc). The search engines are flexible, enabling users to query the entire literature using keywords, one or more categories or a combination of keywords and categories. * Text classification and mining of biomedical literature for database curation. They help database curators to identify and extract biological entities and facts from the full text of research articles. Examples of entity identification and extraction include new allele and gene names and human disease gene orthologs; examples of fact identification and extraction include sentence retrieval for curating gene-gene regulation, Gene Ontology (GO) cellular components and GO molecular function annotations. In addition they classify papers according to curation needs. They employ a variety of methods such as hidden Markov models, support vector machines, conditional random fields and pattern matches. Our collaborators include WormBase, FlyBase, SGD, TAIR, dictyBase and the Neuroscience Information Framework. They are looking forward to collaborating with more model organism databases and projects. * Linking biological entities in PDF and online journal articles to online databases. They have established a journal article mark-up pipeline that links select content of Genetics journal articles to model organism databases such as WormBase and SGD. The entity markup pipeline links over nine classes of objects including genes, proteins, alleles, phenotypes, and anatomical terms to the appropriate page at each database. The first article published with online and PDF-embedded hyperlinks to WormBase appeared in the September 2009 issue of Genetics. As of January 2011, we have processed around 70 articles, to be continued indefinitely. Extension of this pipeline to other journals and model organism databases is planned. Textpresso is useful as a search engine for researchers as well as a curation tool. It was developed as a part of WormBase and is used extensively by C. elegans curators. Textpresso has currently been implemented for 24 different literatures, among them Neuroscience, and can readily be extended to other corpora of text.
Proper citation: Textpresso (RRID:SCR_008737) Copy
http://www.nitrc.org/projects/brainsolution/
A collection of tools for MRI T1 brain image segmentation in the Windows environment. It helps construct a complete pipeline with necessary preprocessing and postprocessing procedures besides brainparser, the core program of our fast brain segmentation. The execution of the whole pipeline can be completed in 2 hours with good segmentation results. Execution requires: FSL
Proper citation: BrainSolution (RRID:SCR_009447) Copy
Biomedical technology resource center specializing in novel approaches and tools for neuroimaging. It develops novel strategies to investigate brain structure and function in their full multidimensional complexity. There is a rapidly growing need for brain models comprehensive enough to represent brain structure and function as they change across time in large populations, in different disease states, across imaging modalities, across age and sex, and even across species. International networks of collaborators are provided with a diverse array of tools to create, analyze, visualize, and interact with models of the brain. A major focus of these collaborations is to develop four-dimensional brain models that track and analyze complex patterns of dynamically changing brain structure in development and disease, expanding investigations of brain structure-function relations to four dimensions.
Proper citation: Laboratory of Neuro Imaging (RRID:SCR_001922) Copy
A hierarchy of portable online interactive aids for motivating, modernizing probability and statistics applications. The tools and resources include a repository of interactive applets, computational and graphing tools, instructional and course materials. The core SOCR educational and computational components include the following suite of web-based Java applets: * Distributions (interactive graphs and calculators) * Experiments (virtual computer-generated games and processes) * Analyses (collection of common web-accessible tools for statistical data analysis) * Games (interfaces and simulations to real-life processes) * Modeler (tools for distribution, polynomial and spectral model-fitting and simulation) * Graphs, Plots and Charts (comprehensive web-based tools for exploratory data analysis), * Additional Tools (other statistical tools and resources) * SOCR Java-based Statistical Computing Libraries * SOCR Wiki (collaborative Wiki resource) * Educational Materials and Hands-on Activities (varieties of SOCR educational materials), * SOCR Statistical Consulting In addition, SOCR provides a suite of tools for volume-based statistical mapping (http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_AnalysesCommandLine) via command-line execution and via the LONI Pipeline workflows (http://www.nitrc.org/projects/pipeline). Course instructors and teachers will find the SOCR class notes and interactive tools useful for student motivation, concept demonstrations and for enhancing their technology based pedagogical approaches to any study of variation and uncertainty. Students and trainees may find the SOCR class notes, analyses, computational and graphing tools extremely useful in their learning/practicing pursuits. Model developers, software programmers and other engineering, biomedical and applied researchers may find the light-weight plug-in oriented SOCR computational libraries and infrastructure useful in their algorithm designs and research efforts. The three types of SOCR resources are: * Interactive Java applets: these include a number of different applets, simulations, demonstrations, virtual experiments, tools for data visualization and analysis, etc. All applets require a Java-enabled browser (if you see a blank screen, see the SOCR Feedback to find out how to configure your browser). * Instructional Resources: these include data, electronic textbooks, tutorials, etc. * Learning Activities: these include various interactive hands-on activities. * SOCR Video Tutorials (including general and tool-specific screencasts).
Proper citation: Statistics Online Computational Resource (RRID:SCR_003378) Copy
A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.
Proper citation: L-Measure (RRID:SCR_003487) Copy
http://www.loni.usc.edu/BIRN/Projects/Mouse/
Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.
Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy
http://neuroscienceblueprint.nih.gov/
Collaborative framework that includes the NIH Office of the Director and the 14 NIH Institutes and Centers that support research on the nervous system. By pooling resources and expertise, the Blueprint identifies cross-cutting areas of research, and confronts challenges too large for any single Institute or Center. The Blueprint makes collaboration a day-to-day part of how the NIH does business in neuroscience, complementing the basic missions of Blueprint partners. During each fiscal year, the partners contribute a small percentage of their funds to a common pool. Since the Blueprint's inception in 2004, this pool has comprised less than 1 percent of the total neuroscience research budget of the partners. In 2009, the Blueprint Grand Challenges were launched to catalyze research with the potential to transform our basic understanding of the brain and our approaches to treating brain disorders. * The Human Connectome Project is an effort to map the connections within the healthy brain. It is expected to help answer questions about how genes influence brain connectivity, and how this in turn relates to mood, personality and behavior. The investigators will collect brain imaging data, plus genetic and behavioral data from 1,200 adults. They are working to optimize brain imaging techniques to see the brain's wiring in unprecedented detail. * The Grand Challenge on Pain supports research to understand the changes in the nervous system that cause acute, temporary pain to become chronic. The initiative is supporting multi-investigator projects to partner researchers in the pain field with researchers in the neuroplasticity field. * The Blueprint Neurotherapeutics Network is helping small labs develop new drugs for nervous system disorders. The Network provides research funding, plus access to millions of dollars worth of services and expertise to assist in every step of the drug development process, from laboratory studies to preparation for clinical trials. Project teams across the U.S. have received funding to pursue drugs for conditions from vision loss to neurodegenerative disease to depression. Since its inception in 2004, the Blueprint has supported the development of new resources, tools and opportunities for neuroscientists. For example, the Blueprint supports several training programs to help students pursue interdisciplinary areas of neuroscience, and to bring students from underrepresented groups into the neurosciences. The Blueprint also funds efforts to develop new approaches to teaching neuroscience through K-12 instruction, museum exhibits and web-based platforms. From fiscal years 2007 to 2009, the Blueprint focused on three major themes of neuroscience - neurodegeneration, neurodevelopment, and neuroplasticity. These efforts enabled unique funding opportunities and training programs, and helped establish new resources including the Blueprint Non-Human Primate Brain Atlas.
Proper citation: NIH Blueprint for Neuroscience Research (RRID:SCR_003670) Copy
A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.
Proper citation: 3D Slicer (RRID:SCR_005619) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.