Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 827 results
Snippet view Table view Download 827 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_016957

    This resource has 10+ mentions.

https://github.com/sansomlab/tenx

Pipeline for the analysis of 10x single cell RNA sequencing data. Collection of python3 pipelines and Rscripts to analyze data generated with the 10x Genomics platform. The pipelines are based on 10x's Cell Ranger pipeline for mapping and quantitation and the R Seurat package for downstream analysis.

Proper citation: tenx (RRID:SCR_016957) Copy   


https://kidsfirstdrc.org/portal/portal-features/

Portal for analysis and interpretation of pediatric genomic and clinical data to advance personalized medicine for detection, therapy, and management of childhood cancer and structural birth defects. For patients, researchers, and clinicians to create centralized database of well curated clinical and genetic sequence data from patients with childhood cancer or structural birth defects.

Proper citation: Kids First Data Resource Portal (RRID:SCR_016493) Copy   


  • RRID:SCR_017118

    This resource has 1000+ mentions.

https://github.com/davidemms/OrthoFinder

Software Python application for comparative genomics analysis. Finds orthogroups and orthologs, infers rooted gene trees for all orthogroups and identifies all of gene duplcation events in those gene trees, infers rooted species tree for species being analysed and maps gene duplication events from gene trees to branches in species tree, improves orthogroup inference accuracy. Runs set of protein sequence files, one per species, in FASTA format.

Proper citation: OrthoFinder (RRID:SCR_017118) Copy   


  • RRID:SCR_017270

    This resource has 1000+ mentions.

https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html

Software package to arrange multiple heatmaps and support various annotation graphics. Used to visualize associations between different sources of data sets and to reveal potential patterns.

Proper citation: ComplexHeatmap (RRID:SCR_017270) Copy   


  • RRID:SCR_016341

    This resource has 5000+ mentions.

https://satijalab.org/seurat/get_started.html

Software as R package designed for QC, analysis, and exploration of single cell RNA-seq data. Enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data.

Proper citation: Seurat (RRID:SCR_016341) Copy   


http://sharedresources.fredhutch.org/core-facilities/bioinformatics

THIS RESOURCE IS NO LONGER IN SERVICE.Documented on July 27,2022. Core provides bioinformatics specialists available to assist researchers with processing, exploring, and understanding genomics data.

Proper citation: Fred Hutchinson Cancer Research Center Co-operative Center for Excellence in Hematology Bioinformatics Resource (RRID:SCR_015324) Copy   


http://www.ebi.ac.uk/ega/

Web service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The repository allows you to explore datasets from numerous genotype experiments, supplied by a range of data providers. The EGA''s role is to provide secure access to the data that otherwise could not be distributed to the research community. The EGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the EGA project. As an example, only members of the EGA team are allowed to process data in a secure computing facility. Once processed, all data are encrypted for dissemination and the encryption keys are delivered offline. The EGA also supports data access only for the consortium members prior to publication.

Proper citation: European Genome phenome Archive (RRID:SCR_004944) Copy   


http://glioblastoma.alleninstitute.org/

Platform for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels that includes two interactive databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities: * The open public image database, here, providing in situ hybridization data mapping gene expression across the anatomic structures inherent in glioblastoma, as well as associated histological data suitable for neuropathological examination * A companion database (Ivy GAP Clinical and Genomic Database) offering detailed clinical, genomic, and expression array data sets that are designed to elucidate the pathways involved in glioblastoma development and progression. This database requires registration for access. The hope is that researchers all over the world will mine these data and identify trends, correlations, and interesting leads for further studies with significant translational and clinical outcomes. The Ivy Glioblastoma Atlas Project is a collaborative partnership between the Ben and Catherine Ivy Foundation, the Allen Institute for Brain Science and the Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment.

Proper citation: Ivy Glioblastoma Atlas Project (RRID:SCR_005044) Copy   


  • RRID:SCR_005375

    This resource has 10000+ mentions.

http://bejerano.stanford.edu/prism/public/html/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy   


  • RRID:SCR_005441

http://202.97.205.78/CpG_MPs/

Tool for identification and analysis of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. It may identify the unmethylated and methylated regions for a single sample, the conserved and differential methylation regions with different methylation patterns for paired or multiple samples. It includes four main modules as follows: # Normalization of the sequencing reads of cytosines following guanines; # Identification of the unmethylated (methylated) regions using hotspot extension algorithm; # Identification of conservatively and differentially methylated regionsby combining the combinatorial algorithm for determination of potentially functional regions with the algorithm of analysis of variance (ANOVA) for assess the statistical significance of differentially methylated regions; # Extraction of sequence features and visualization of these potentially functional regions.

Proper citation: CpG MPs (RRID:SCR_005441) Copy   


  • RRID:SCR_005778

http://www.garban.org/garban/home.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool

Proper citation: GARBAN (RRID:SCR_005778) Copy   


  • RRID:SCR_005774

    This resource has 1+ mentions.

http://corneliu.henegar.info/FunCluster.htm

FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FunCluster (RRID:SCR_005774) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005780

    This resource has 10000+ mentions.

Ratings or validation data are available for this resource

http://genome.ucsc.edu/

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy   


https://code.google.com/p/ontology-for-genetic-interval/

An ontology that formalized the genomic element by defining an upper class genetic interval using BFO as its framework. The definition of genetic interval is the spatial continuous physical entity which contains ordered genomic sets (DNA, RNA, Allele, Marker,etc.) between and including two points (Nucleic_Acid_Base_Residue) on a chromosome or RNA molecule which must have a liner primary sequence structure.

Proper citation: Ontology for Genetic Interval (RRID:SCR_003423) Copy   


  • RRID:SCR_004353

    This resource has 10+ mentions.

https://reich.hms.harvard.edu/software

Software application that finds skews in ancestry that are potentially associated with disease genes in recently mixed populations like African Americans. It can be downloaded for either UNIX or Linux.

Proper citation: Ancestrymap (RRID:SCR_004353) Copy   


  • RRID:SCR_005821

    This resource has 1+ mentions.

http://www.ebi.ac.uk/expressionprofiler/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The EP:GO browser is built into EBI's Expression Profiler, a set of tools for clustering, analysis and visualization of gene expression and other genomic data. With it, you can search for GO terms and identify gene associations for a node, with or without associated subnodes, for the organism of your choice.

Proper citation: Expression Profiler (RRID:SCR_005821) Copy   


  • RRID:SCR_007514

http://www.homepages.ed.ac.uk/pmckeigu/pooling/poolscore.htm

Software program for analysis of case-control genetic association studies using allele frequency measurements on DNA pools (entry from Genetic Analysis Software)

Proper citation: POOLSCORE (RRID:SCR_007514) Copy   


http://atlasgeneticsoncology.org/

Online journal and database devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. Its aim is to cover the entire field under study and it presents concise and updated reviews (cards) or longer texts (deep insights) concerning topics in cancer research and genomics.

Proper citation: Atlas of Genetics and Cytogenetics in Oncology and Haematology (RRID:SCR_007199) Copy   


  • RRID:SCR_007102

    This resource has 1+ mentions.

http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.

Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X