Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 240 results
Snippet view Table view Download 240 Result(s)
Click the to add this resource to a Collection

http://bioimaging.dbi.udel.edu

Microscopy facility that houses equipment including confocal microscopes: LSM780 confocal microscope (Located at CBBI),LSM880 confocal microscope (Located at DBI 117),electron microscopes and their accessory instrumentation:Thermo Scientific Apreo VS SEM microscope,Hitachi S-4700, Leica EM ACE600 and Tousimis Autosamdri-815B,CX7 high content analysis system. Our staff has technical expertise across different microscopy platforms and methodologies.

Proper citation: University of Delaware BioImaging Center Core Facility (RRID:SCR_017814) Copy   


http://crl.berkeley.edu/molecular-imaging-center/

Microscopy core specializing in laser based fluorescence techniques. Offers training and expertise in 20 different microscope systems, including live cell and in vivo imaging, laser scanning (LSM) and spinning disk (SDC) confocal, multi-photon (2p), fluorescent lifetime imaging (FLIM), light-sheet microscopy (SPIM), super resolution (Airyscan), slide scanning and patterned illumination for optogenetic manipulation and readout. Provides offline computer analysis workstations for image processing, visualization and analysis, including GPU workstations. MIC operates in 3 different buildings on campus, with primary locations in Life Sciences Addition (LSA), North-side core in Barker Hall, and small outpost in Li Ka Shing Center for Biomedical and Health Sciences (LKS).Provides equipment in categories:Confocal and multi photon laser scanning microscopes,Spinning disk confocal microscopes,Lightsheet (SPIM) microscopes,Epifluorescence/widefield scopes and Computer workstations.

Proper citation: University of California at Berkeley Cancer Research Laboratory Molecular Imaging Center Core Facility (RRID:SCR_017852) Copy   


https://med.virginia.edu/molecular-electron-microscopy-core/

Facility dedicated to high resolution electron cryomicroscopy and electron cryotomography. It houses three electron microscopes,120kV Spirit, 200kV F20, and 300kV Titan Krios. These microscopes are available to researchers either for direct use, or aided by MEMC personnel, to collect data aimed at high resolution structural biology projects.

Proper citation: University of Virginia School of Medicine Molecular Electron Microscopy Core Facility (RRID:SCR_019031) Copy   


http://www.med.uvm.edu/mic

Core provides imaging equipment including JEOL 1400 transmission electron microscope with AMT 11 megapixel digital camera,JEOL JSM 6060 scanning electron microscope with attached Oxford INCA energy dispersive spectroscopy detector for element analysis,Nikon Air HD confocal scanning laser microscope, Nikon C2 confocal scanning laser microscope, Andor Spinning Disk confocal microscope, Zeiss LSM 7 Multiphoton confocal microscope, Nikon STORM super-resolution light microscope, Olympus BX50 research microscope for transmitted light, phase contrast, and epi-fluorescence microscopy, Asylum Research MFP-3D BIO atomic force microscope, Asylum Research Cypher Environmental atomic force microscope,Arcturus XT-Ti Laser Capture Microdissector system, Olympus IX70 inverted microscope with associated Applied BioPhysics Electri Cell-Substrate Impedance Sensing (ECIS Ztheta) system, Leica VERSA 8 whole slide imager, Dell workstations containing Molecular Devices MetaMorph image analysis software for complex quantitative image analysis, Indica Labs HALO software, Improvision Volocity, MBR StereoInvestigator.

Proper citation: Vermont University Larner College of Medicine Microscopy Imaging Center Core Facility (RRID:SCR_018821) Copy   


http://nemoursresearch.org/cores/bcl/

Develops research projects in pediatric genetics and provides essential services in molecular biology and genetics to Nemours clinicians and research staff and to affiliates researchers of University of Delaware and Thomas Jefferson University. Resource for staff of Alfred I. duPont Hospital for Children, Nemours affiliates, COBRE / INBRE investigators and outside customers. Offers expertise in molecular genetics and genomics. Operates according to policies set forth by federal CLIA standards.Services provided include Ion Torrent PGM Next Generation Sequencing, QuantStudio (QS) 3D Digital PCR, Cell Line Authentication, Nucleic Acid Quality Number (AATI Fragment Analyzer),Genotyping including Allelic Discrimination Probes (SNP Real-Time PCR), Affymetrix Microarray (CNV CytoScan, SNP arrays), Fragment Analysis (Capillary Electrophoresis up to 1200 bp), DNA Sequencing (Sanger Sequencing), Expression Analysis including Affymetrix Microarray (global gene expression, transcriptome assays), Pathway-focused Real-Time qPCR (mRNA and miRNA). Shared Instrumentation including Beckman Biomek 3000 Liquid Handler, NanoDrop 2000c, ABI7900 384-well Real-Time Genetic Analyzer, PCR Tamer, Thermocyclers.

Proper citation: Nemours Biomolecular Core Facility (RRID:SCR_018265) Copy   


  • RRID:SCR_009586

    This resource has 100+ mentions.

http://www.nmr.mgh.harvard.edu/DOT/resources/homer2/home.htm

Software matlab scripts used for analyzing fNIRS data to obtain estimates and maps of brain activation. Graphical user interface (GUI) for visualization and analysis of functional near-infrared spectroscopy (fNIRS) data.

Proper citation: Homer2 (RRID:SCR_009586) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   


  • RRID:SCR_016674

https://omictools.com/tiltpicker-tool

Software tool to facilitate particle selection in single particle electron microscopy. An interactive graphical interface application designed to streamline the selection of particle pairs from tilted-pair datasets. Designed to work with existing software tools for image processing.

Proper citation: TiltPicker (RRID:SCR_016674) Copy   


  • RRID:SCR_015666

    This resource has 1+ mentions.

http://doa.nubic.northwestern.edu/pages/search.php

Project portal for a collaborative database aiming to provide a comprehensive annotation to human genome.It uses the computable, controlled vocabulary of Disease Ontology (DO) and NCBI Gene Reference Into Function (GeneRIF).

Proper citation: DOAF (RRID:SCR_015666) Copy   


  • RRID:SCR_017012

    This resource has 50+ mentions.

https://github.com/kstreet13/slingshot

Software R package for identifying and characterizing continuous developmental trajectories in single cell data. Cell lineage and pseudotime inference for single-cell transcriptomics.

Proper citation: Slingshot (RRID:SCR_017012) Copy   


http://www.lfd.uci.edu/

Biomedical technology research center and training resource that develops novel fluorescence technologies, including instrumentation, methods and software applicable to cellular imaging and the elucidation of dynamic processes in cells. The LFD's main activities are: * Services and Resources: the LFD provides a state-of-the-art laboratory for fluorescence measurements, microscopy and spectroscopy, with technical assistance to visiting scientists. * Research and Development: the LFD designs, tests, and implements advances in the technology of hardware, software, and biomedical applications. * Training and Dissemination: the LFD disseminates knowledge of fluorescence spectroscopic principles, instrumentation, and applications to the scientific community.

Proper citation: Laboratory for Fluorescence Dynamics (RRID:SCR_001437) Copy   


  • RRID:SCR_001439

    This resource has 50+ mentions.

https://biocars.uchicago.edu/

Biomedical technology research center and training resource that is a state-of-the art, national user facility for synchrotron-based studies of dynamic and static properties of macromolecules by X-ray scattering techniques such as crystallography (specializing in time-resolved), small- and wide-angle X-ray scattering and fiber diffraction. BioCARS operates two X-ray beamlines, embedded in a Biosafety Level 3 (BSL-3) facility unique in the U.S. that permits safe studies of biohazardous materials such as human pathogens., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: BioCARS (RRID:SCR_001439) Copy   


http://www.biocurrents.org/

The BioCurrents Research Center (BRC) is an integrated technology resource of the NIH:NCRR. The activities of the Center focus on molecular physiology as it relates to the cell function and disease. Our particular interest is how the dynamics of cell responses are reflected in the chemical profiles of microdomains surrounding single living cells. In order to measure complex cellular boundary layers, the BRC has specialized in the development of extremely sensitive signal acquisition and processing methods along with miniaturized electrochemical sensor designs. The technique is non-invasive and termed self-referencing. Since its establishment in 1996, the BRC has directed its technological research and development to the design and application of ultra-microelectrodes (tip diameters of less than 10m) tailored for the detection of specific chemicals. These have been successfully applied to the boundary layer profiles of many different cell types, with thematic strength in diabetes research, reproductive health and development (see collaborative profiles). More recently, it is changing its focus to technical developments, enhancing the integrative approach to cell function. To understand a cell as a dynamic and integrated whole, BRC must be able to examine responses from different domains as near to real time and as synchronously as possible. To this end, it is developing imaging capabilities to work in parallel with electrochemistry and conventional electrophysiological techniques. Imaging includes a spinning disc confocal, as well as a low light/luminescent imager designed and built within the BRC. The technologies developed or under development are in high demand within the biomedical community. Over 40 investigators work with the Center each year in a collaborative or service capacity. Over 80 of our visitor pool is NIH funded, representing approximately 25 NIH divisions and institutes. As part of our training and dissemination program we host occasional workshops at major national and international meetings, train a significant number of new investigators each year and host graduate students undertaking portions of their thesis dissertation using our technologies. In dissemination we advise on, and install, electrochemical systems in off campus research endeavors, both academic and industrial.

Proper citation: BioCurrents Research Center (RRID:SCR_002020) Copy   


http://www.cmrr.umn.edu/

Biomedical technology research center that focuses on development of unique magnetic resonance (MR) imaging and spectroscopy methodologies and instrumentation for the acquisition of structural, functional, and biochemical information non-invasively in humans, and utilizing this capability to investigate organ function in health and disease. The distinctive feature of this resource is the emphasis on ultrahigh magnetic fields (7 Tesla and above), which was pioneered by this BTRC. This emphasis is based on the premise that there exists significant advantages to extracting biomedical information using ultrahigh magnetic fields, provided difficulties encountered by working at high frequencies corresponding to such high field strengths can be overcome by methodological and engineering solutions. This BTRC is home to some of the most advanced MR instrumentation in the world, complemented by human resources that provide unique expertise in imaging physics, engineering, and signal processing. No single group of scientists can successfully carry out all aspects of this type of interdisciplinary biomedical research; by bringing together these multi-disciplinary capabilities in a synergistic fashion, facilitating these interdisciplinary interactions, and providing adequate and centralized support for them under a central umbrella, this BTRC amplifies the contributions of each of these groups of scientists to basic and clinical biomedical research. Collectively, the approaches and instrumentation developed in this BTRC constitute some of the most important tools used today to study system level organ function and physiology in humans for basic and translational research, and are increasingly applied world-wide. CMRR Faculty conducts research in a variety of areas including: * High field functional brain mapping in humans; methodological developments, mechanistic studies, and neuroscience applications * Metabolism, bioenergetics, and perfusion studies of human pathological states (tumors, obesity, diabetes, hepatic encephalopathy, cystic fibrosis, and psychiatric disorders) * Cardiac bioenergetics under normal and pathological conditions * Automated magnetic field shimming methods that are critical for spectroscopy and ultrafast imaging at high magnetic fields * Development of high field magnetic resonance imaging and spectroscopy techniques for anatomic, physiologic, metabolic, and functional studies in humans and animal models * Radiofrequency (RF) pulse design based on adiabatic principles * Development of magnetic resonance hardware for high fields (e.g. RF coils, pre-amplifiers, digital receivers, phased arrays, etc.) * Development of software for data analysis and display for functional brain mapping.

Proper citation: Center for Magnetic Resonance Research (RRID:SCR_003148) Copy   


  • RRID:SCR_002861

    This resource has 100+ mentions.

http://www.wormatlas.org/

Anatomical atlas about structural anatomy of Caenorhabditis elegans. Provides simple interface allowing user to easily navigate through every anatomical structure of worm. Contains set of images which can be sorted by different characteristics: sex, genotype, age, body portion or tissue type. Includes links to other major worm websites and databases. Application for viewing and downloading thousands of unpublished electron micrographs and associated data. These images have been generated by several labs in the C. elegans community, including the MRC, the Hall lab (Center for C. elegans Anatomy), and the Culotti and Riddle labs.

Proper citation: WormAtlas (RRID:SCR_002861) Copy   


http://www.wanprc.org/primate-resources/pathology-tissue-program/

A comparative pathology unit offering pathology support, training programs, and a Tissue Distribution Program (TDP). The TDP provides a wide variety of nonhuman primate tissues to investigative groups within and outside the Washington National Primate Research Center (WaNPRC). Tissue and pathology services (ACVP board certified Veterinary Pathologists), full histology services (including immunohistochemistry and frozen sectioning), and protocol development consultation are available. The Pathology and Tissue Program is an integration of comparative pathology activities occurring at the Washington National Primate Research Center and those occurring within the University of Washington Department of Comparative Medicine ((DCM). Using this model, Washington National Primate Research Center pathologists provide routine pathology support for Washington National Primate Research Center animals, with ancillary support, expertise, and guidance provided by DCM pathologists and mission-dedicated technicians and laboratories. This integrated comparative pathology unit also provides an excellent training opportunity for students such as those enrolled in the Department of Comparative Medicine post-doctoral training program, which offers training in laboratory animal medicine and comparative pathology. A particularly important function of this comparative pathology unit is support of the Tissue Distribution Program. The TDP provides a wide variety of nonhuman primate tissues to investigative groups within and outside the WaNPRC. This program is an extremely valuable method of conserving the nonhuman primate resource. NHP tissues and biological materials are collected in preparation for RNA/DNA isolation, cell culture, immunohistochemistry/histology, anatomic dissection, and cell sorting. Capabilities of the TDP include, but are not limited to flash frozen preservation, sterile preparation, perfusion, technical surgical dissections, and OCT embedding. In conjunction with the Histology and Imaging core of the University of Washington DCM, research capabilities post-collection include in situ hybridization, confocal and fluorescent microscopy, live cell imaging (DeltaVision), and whole slide scanning with image analysis (Visiopharm, Nikon Elements, and Image Pro). Centralized coordination of nonhuman primate tissue requests with animal availability allows support for a large number of biomedical programs with significantly decreased impact on the animal resource.

Proper citation: WaNPRC Pathology and Tissue Program (RRID:SCR_005589) Copy   


  • RRID:SCR_005813

    This resource has 1+ mentions.

http://lussierlab.org/GO-Module/GOModule.cgi

GO-Module provides an interface to reduce the dimensionality of GO enrichment results and produce interpretable biomodules of significant GO terms organized by hierarchical knowledge that contain only true positive results. Users can download a text file of GO terms annotated with their significance and identified biomodules, a network visualization of resultant GO IDs or terms in PDF format, and view results in an online table. Platform: Online tool

Proper citation: GO-Module (RRID:SCR_005813) Copy   


https://www.unmc.edu/vcr/cores/vcr-cores/confocal-microscopy/index.html

Facility houses imaging technologies ranging from super resolution (~ 0.120 um to 0.020 um) to microscopic (~ 0.300 um) to mesoscopic (~ 1 um) biomedical imaging. Imaging specialists provide training and/or actively assist researchers collecting images across imaging instrumentation. Instrumentation includes Zeiss ELYRA PS.1 is inverted microscope for super resolution (SR) structured illumination microscopy (SIM) and single molecule localization microscopy (SMLM) including, PhotoActivated Localization Microscopy (PALM) using photo switchable/convertible fluorescent proteins, Total Internal Reflection Fluorescence (TIRF) and STochastic Optical Reconstruction Microscopy (STORM);Zeiss 800 CLSM with Airyscan is an inverted microscope dramatically increasing conventional confocal image resolution to ~180 nm using Airyscan technology; Zeiss 710 LSM is inverted microscope supporting most basic imaging applications, multi channel and spectral, co localization, live cell, 3D, and time series imaging; Zeiss Celldiscoverer 7 is widefield imaging system for automated, time lapse imaging of live samples; Zeiss Axioscan 7 is high performance whole slide scanning system for fluorescence, brightfield, and polarization imaging;Miltenyi Biotec Ultramicroscope II Light Sheet fluorescence microscope (LSFM) extends fluorescent imaging into true 3D, large scale volumetric imaging of intact tissues, organs, and small organisms. AMCF also houses several high-end data analysis workstations with premier image analysis software including HALO (Indica Labs) and IMARIS (Oxford Instruments) facilitating data rendering, analyses, and presentation options.

Proper citation: University of Nebraska Medical Center Advanced Microscopy Core Facility (RRID:SCR_022467) Copy   


https://www.utsouthwestern.edu/labs/qlmc/

Provides access to variety of microscope modalities including laser scanning and spinning disk confocal, multiphoton, wide field deconvolution, CFP/YFP FRET, TIRF, single molecule imaging, and more. Offers customized microscopy training, advise and help with sample preparation, image quantification, and offer basic microscope maintenance. Can streamline your data handling and image visualization as well as automate your image analysis workflow through customized Fiji macros.

Proper citation: University of Texas Southwestern Medical Center Quantitative Light Microscopy Core Facility (RRID:SCR_022605) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X