Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection

http://www.patika.org/

The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.

Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy   


  • RRID:SCR_005806

    This resource has 10+ mentions.

http://go.princeton.edu/cgi-bin/GOTermMapper

The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy   


  • RRID:SCR_005799

    This resource has 50+ mentions.

http://smd.stanford.edu/cgi-bin/source/sourceSearch

SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool

Proper citation: SOURCE (RRID:SCR_005799) Copy   


  • RRID:SCR_005679

    This resource has 1+ mentions.

http://gdm.fmrp.usp.br/tools_bit.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. Gene Class Expression allows functional annotation of SAGE data using the Gene Ontology database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing. Platform: Online tool

Proper citation: Gene Class Expression (RRID:SCR_005679) Copy   


  • RRID:SCR_005669

    This resource has 1+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Compare

Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Since focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the GO nomenclature. Compare commercially available microarrays based on GO. User account required. Platform: Online tool

Proper citation: Onto-Compare (RRID:SCR_005669) Copy   


  • RRID:SCR_006141

    This resource has 10+ mentions.

http://www.pathbase.net/

Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)

Proper citation: Pathbase (RRID:SCR_006141) Copy   


  • RRID:SCR_006201

    This resource has 1+ mentions.

http://code.google.com/p/behavior-ontology

An ontology consisting of two main components, an ontology of behavioral processes and an ontology of behavioral phenotypes. The behavioral process branch of NBO contains a classification of behavior processes complementing and extending the GO process ontology. The behavior phenotype branch of NBO consists of a classification of both normal and abnormal behavioral characteristics of organisms. The prime application of NBO is to provide the vocabulary that is required to integrate behavior observations within and across species. It is currently being applied by several model organism communities as well as in the description of human behavior-related disease phenotypes. The main ontology is available in both the OBO Flatfile Format and the Web Ontology Language (OWL).

Proper citation: Neurobehavior Ontology (RRID:SCR_006201) Copy   


  • RRID:SCR_002360

    This resource has 100+ mentions.

http://discover.nci.nih.gov/gominer/

GoMiner is a tool for biological interpretation of "omic" data including data from gene expression microarrays. Omic experiments often generate lists of dozens or hundreds of genes that differ in expression between samples, raising the question, What does it all mean biologically? To answer this question, GoMiner leverages the Gene Ontology (GO) to identify the biological processes, functions and components represented in these lists. Instead of analyzing microarray results with a gene-by-gene approach, GoMiner classifies the genes into biologically coherent categories and assesses these categories. The insights gained through GoMiner can generate hypotheses to guide additional research. GoMiner displays the genes within the framework of the Gene Ontology hierarchy in two ways: * In the form of a tree, similar to that in AmiGO * In the form of a "Directed Acyclic Graph" (DAG) The program also provides: * Quantitative and statistical analysis * Seamless integration with important public databases GoMiner uses the databases provided by the GO Consortium. These databases combine information from a number of different consortium participants, include information from many different organisms and data sources, and are referenced using a variety of different gene product identification approaches.

Proper citation: GoMiner (RRID:SCR_002360) Copy   


http://bioinformatics.biol.rug.nl/standalone/fiva/

Functional Information Viewer and Analyzer (FIVA) aids researchers in the prokaryotic community to quickly identify relevant biological processes following transcriptome analysis. Our software is able to assist in functional profiling of large sets of genes and generates a comprehensive overview of affected biological processes. Currently, seven different modules containing functional information have been implemented: (i) gene regulatory interactions, (ii) cluster of orthologous groups (COG) of proteins, (iii) gene ontologies (GO), (iv) metabolic pathways (v) Swiss Prot keywords, (vi) InterPro domains - and (vii) generic functional categories. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FIVA - Functional Information Viewer and Analyzer (RRID:SCR_005776) Copy   


http://ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.term_enrichment.shtml#gobean

GoBean is a Java application for gene ontology enrichment analysis. It utilizes the NetBeans platform framework. Features * Graphical comparison of multiple enrichment analysis results * Versatile filter facility for focused analysis of enrichment results * Effective exploitation of the graphical/hierarchical structure of GO * Evidence code based association filtering * Supports local data files such as the ontology obo file and gene association files * Supports late enrichment methods and multiple testing corrections * Built-in ID conversion for common species using Ensembl biomart service Platform: Windows compatible, Mac OS X compatible, Linux compatible

Proper citation: GoBean - a Java application for Gene Ontology enrichment analysis (RRID:SCR_005808) Copy   


  • RRID:SCR_004834

    This resource has 10+ mentions.

https://neuinfo.org/mynif/search.php?list=cover&q=*

Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.

Proper citation: NIF Data Federation (RRID:SCR_004834) Copy   


http://compbio.dfci.harvard.edu/amp/

THIS RESOURCE IS NO LONGER IN SERVICE, documented November 4, 2015. Web application based on the TM4 Microarray Software Suite to provide a means of normalization and analysis of microarray data. Users can upload data in the form of Affymetrix CEL files, and define an analysis pipeline by selecting several intuitive options. It performs data normalization (eg RMA), basic statistical analysis (eg t-test, ANOVA), and analysis of annotation using gene classification (eg Gene Ontology term assignment). The analysis are performed without user intervention and the results are presented in a web-based summary that allows data to be downloaded in a variety of formats compatible with further directed analysis.

Proper citation: Automated Microarray Pipeline (RRID:SCR_001219) Copy   


  • RRID:SCR_001402

    This resource has 1+ mentions.

http://www.btool.org/WegoLoc

Data analysis service that predicts protein subcellular localizations of animal, fungal, plant, and human proteins based on sequence similarity and gene ontology information.

Proper citation: WegoLoc (RRID:SCR_001402) Copy   


http://genome.crg.es/GOToolBox/

The GOToolBox web server provides a series of programs allowing the functional investigation of groups of genes, based on the Gene Ontology resource. The web version of the GOToolBox is free for non-commercial users only. Users from commercial companies are allowed to use the site during a reasonable testing period. For a regular use of the web version, a license fee should be paid. We have developed methods and tools based on the Gene Ontology (GO) resource allowing the identification of statistically over- or under-represented terms in a gene dataset; the clustering of functionally related genes within a set; and the retrieval of genes sharing annotations with a query gene. GO annotations can also be constrained to a slim hierarchy or a given level of the ontology. The source codes are available upon request, and distributed under the GPL license. Platform: Online tool

Proper citation: GOToolBox Functional Investigation of Gene Datasets (RRID:SCR_003192) Copy   


  • RRID:SCR_004173

    This resource has 10+ mentions.

http://www.inmex.ca./INMEX/

A web-based tool to support meta-analysis of multiple gene-expression data sets, as well as to enable integration of data sets from gene expression and metabolomics experiments. INMEX contains three functional modules. The data preparation module supports flexible data processing, annotation and visualization of individual data sets. The statistical analysis module allows researchers to combine multiple data sets based on P-values, effect sizes, rank orders and other features. The significant genes can be examined in functional analysis module for enriched Gene Ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or expression profile visualization. INMEX has built-in support for common gene/metabolite identifiers (IDs), as well as 45 popular microarray platforms for human, mouse and rat. Complex operations are performed through a user-friendly web interface in a step-by-step manner.

Proper citation: INMEX (RRID:SCR_004173) Copy   


  • RRID:SCR_003552

    This resource has 1+ mentions.

http://biomine.cs.helsinki.fi/

Service that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. In particular, it formulates protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph.

Proper citation: Biomine (RRID:SCR_003552) Copy   


  • RRID:SCR_003554

    This resource has 1+ mentions.

http://kt.ijs.si/software/SEGS/

A web tool for descriptive analysis of microarray data. The analysis is performed by looking for descriptions of gene sets that are statistically significantly over- or under-expressed between different scenarios within the context of a genome-scale experiments (DNA microarray). Descriptions are defined by using the terms from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene-gene interactions found in the ENTREZ database. Gene annotations by GO and KEGG terms can also be found in the ENTREZ database. The tool provides three procedures for testing the enrichment of the gene sets (over- or under-expressed): Fisher's exact test, GSEA and PAGE, and option for combining the results of the tests. Because of the multiple-hypothesis testing nature of the problem, all the p-values are computed using the permutation testing method.

Proper citation: SEGS (RRID:SCR_003554) Copy   


  • RRID:SCR_003452

    This resource has 10+ mentions.

http://www.t-profiler.org

One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. The T-profiler tool hosted on this website uses the t-test to score changes in the average activity of pre-defined groups of genes. The gene groups are defined based on Gene Ontology categorization, ChIP-chip experiments, upstream matches to a consensus transcription factor binding motif, and location on the same chromosome, respectively. If desired, an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. A jack-knife procedure is used to make calculations more robust against outliers. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can submit their microarray data for analysis by clicking on one of the two organism-specific tabs above. Platform: Online tool

Proper citation: T-profiler (RRID:SCR_003452) Copy   


  • RRID:SCR_005773

http://www.plexdb.org/plex.php?database=Barley/funcexpression.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 11, 2012. FuncExpression is a web-based resource for functional interpretation of large scale genomics data. FuncExpression can be used for the functional comparison of plant, animal, and fungal gene name lists generated from genomics and proteomics experiments. Multiple gene lists can be classified, compared and visualized. FuncExpression supports two way-integration of plant gene functional information and the gene expression data, which allows for further cross-validation with plant microarray data from related experiments at BarleyBase. Platform: Online tool

Proper citation: FuncExpression (RRID:SCR_005773) Copy   


http://webclu.bio.wzw.tum.de/profcom/

Profiling of Complex Functionality (ProfCom) is a web-based tool for the functional interpretation of a gene list that was identified to be related by experiments. A trait which makes ProfCom a unique tool is an ability to profile enrichments of not only available Gene Ontology (GO) terms but also of complex function. A complex function is constructed as Boolean combination of available GO terms. The complex functions inferred by ProfCom are more specific in comparison to single terms and describe more accurately the functional role of genes. Platform: Online tool

Proper citation: ProfCom - Profiling of complex functionality (RRID:SCR_005797) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X