Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 172 results
Snippet view Table view Download 172 Result(s)
Click the to add this resource to a Collection

https://www.icpsr.umich.edu/icpsrweb/content/addep/index.html

Provides access to data including wide range of topics related to disability. ADDEP data can be used to better understand and inform the implementation of Americans with Disabilities Act and other disability policies.

Proper citation: Archive of Data on Disability to Enable Policy (ADDEP) (RRID:SCR_016315) Copy   


https://CRAN.R-project.org/package=macc

Software package to perform causal mediation analysis under confounding or correlated errors. Includes single level mediation model, two level and three level mediation model for data with hierarchical structures. Under two or three level mediation model, correlation parameter is identifiable and is estimated based on hierarchical likelihood, marginal likelihood or two stage method.

Proper citation: Mediation Analysis of Causality under Confounding (RRID:SCR_017442) Copy   


  • RRID:SCR_017449

    This resource has 100+ mentions.

https://neuron.yale.edu/neuron/

Software for computational neurophysiology. Simulation environment is used for building and using computational models of neurons and networks of neurons. NEURON Users Group can participate in collaborative development of documentation, tutorials, and software.

Proper citation: NEURON (RRID:SCR_017449) Copy   


  • RRID:SCR_015846

    This resource has 1+ mentions.

http://www.iu.edu/~beca/

Visualization and analysis software for interactive visual exploration and mining of fiber-tracts and brain networks with their genetic determinants and functional outcomes. BECA includes an fMRI and Diseases Analysis version as well as a Genome Explorer version.

Proper citation: BECA (RRID:SCR_015846) Copy   


  • RRID:SCR_015704

    This resource has 1+ mentions.

http://mrir.med.miami.edu:8000/midas

Software for processing, display, and analysis of magnetic resonance spectroscopic imaging data. MIDAS supports a "whole-brain" MRSI acquisition method that has been implemented on MRI systems from three major manufacturers., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: MIDAS (RRID:SCR_015704) Copy   


  • RRID:SCR_016911

    This resource has 1+ mentions.

https://github.com/QTIM-Lab/DeepNeuro

Software Python package for neuroimaging data. Framework to design and train neural network architectures. Used in medical imaging community to ensure consistent performance of networks across variable users, institutions, and scanners.

Proper citation: DeepNeuro (RRID:SCR_016911) Copy   


https://yeatmanlab.github.io/pyAFQ/

Software package focused on automated delineation of major fiber tracts in individual human brains, and quantification of tissue properties within the tracts.Software for automated processing and analysis of diffusion MRI data. Automates tractometry.

Proper citation: Automated Fiber Quantification in Python (RRID:SCR_023366) Copy   


http://web.mit.edu/spectroscopy/facilities/lbrc.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Biomedical technology research center that develops basic scientific understanding and new techniques required for advancing clinical applications of lasers and spectroscopy. LBRC merges optical spectroscopy, imaging, scattering, and interferometry techniques to study biophysics and biochemistry of healthy and diseased biological structures from subcellular to entire-organ scale.

Proper citation: Laser Biomedical Research Center (RRID:SCR_000106) Copy   


http://www.cmrr.umn.edu/

Biomedical technology research center that focuses on development of unique magnetic resonance (MR) imaging and spectroscopy methodologies and instrumentation for the acquisition of structural, functional, and biochemical information non-invasively in humans, and utilizing this capability to investigate organ function in health and disease. The distinctive feature of this resource is the emphasis on ultrahigh magnetic fields (7 Tesla and above), which was pioneered by this BTRC. This emphasis is based on the premise that there exists significant advantages to extracting biomedical information using ultrahigh magnetic fields, provided difficulties encountered by working at high frequencies corresponding to such high field strengths can be overcome by methodological and engineering solutions. This BTRC is home to some of the most advanced MR instrumentation in the world, complemented by human resources that provide unique expertise in imaging physics, engineering, and signal processing. No single group of scientists can successfully carry out all aspects of this type of interdisciplinary biomedical research; by bringing together these multi-disciplinary capabilities in a synergistic fashion, facilitating these interdisciplinary interactions, and providing adequate and centralized support for them under a central umbrella, this BTRC amplifies the contributions of each of these groups of scientists to basic and clinical biomedical research. Collectively, the approaches and instrumentation developed in this BTRC constitute some of the most important tools used today to study system level organ function and physiology in humans for basic and translational research, and are increasingly applied world-wide. CMRR Faculty conducts research in a variety of areas including: * High field functional brain mapping in humans; methodological developments, mechanistic studies, and neuroscience applications * Metabolism, bioenergetics, and perfusion studies of human pathological states (tumors, obesity, diabetes, hepatic encephalopathy, cystic fibrosis, and psychiatric disorders) * Cardiac bioenergetics under normal and pathological conditions * Automated magnetic field shimming methods that are critical for spectroscopy and ultrafast imaging at high magnetic fields * Development of high field magnetic resonance imaging and spectroscopy techniques for anatomic, physiologic, metabolic, and functional studies in humans and animal models * Radiofrequency (RF) pulse design based on adiabatic principles * Development of magnetic resonance hardware for high fields (e.g. RF coils, pre-amplifiers, digital receivers, phased arrays, etc.) * Development of software for data analysis and display for functional brain mapping.

Proper citation: Center for Magnetic Resonance Research (RRID:SCR_003148) Copy   


http://www.raraf.org/

Biomedical technology research center dedicated for radiobiological research with available ionizing radiations such as protons, alpha particles, and neutrons. RARAF is well-established and highly user-friendly. The focus of RARAF is the development of high-throughput single-cell/single-particle microbeams, which can deliver defined amounts of ionizing radiation into individual cells with a spatial resolution of a few microns or better. The ability of a microbeam to put double strand break damage at any specific known location in a given cell has allowed new approaches to the study of damage signaling.

Proper citation: Radiological Research Accelerator Facility (RRID:SCR_001425) Copy   


  • RRID:SCR_015634

    This resource has 1+ mentions.

https://github.com/scidash/neuronunit

Software toolkit for data-driven validation of neuron and ion channel models using SciUnit. NeuronUnit implements an interface to several simulators and model description languages, handles test calculations according to domain standards, and enables automated construction of tests based on data from several major public data repositories.

Proper citation: NeuronUnit (RRID:SCR_015634) Copy   


https://kimlab.io/brain-map/DevCCF/

Open access multimodal 3D atlases of developing mouse brain that can be used to integrate mouse brain imaging data for visualization, education, cell census mapping, and more. Atlas ages include E11.5, E13.5, E15.5, E18.5, P4, P14, and P56. Web platform can be utilized to visualize and explore the atlas in 3D. Downloadable atlas can be used to align multimodal mouse brain data. Morphologically averaged symmetric template brains serve as the basis reference space and coordinate system. Anatomical labels are manually drawn in 3D based on the prosomeric model. For additional references, the P56 template includes templates and annotations from the aligned Allen Mouse Brain Common Coordinate Framework (Allen CCFv3) and aligned Molecular Atlas of the Adult Mouse Brain.

Proper citation: 3D Developmental Mouse Brain Common Coordinate Framework (RRID:SCR_025544) Copy   


  • RRID:SCR_025563

https://brainlife.io/docs/using_ezBIDS/

Web-based BIDS conversion tool to convert neuroimaging data and associated metadata to BIDS standard. Guided standardization of neuroimaging data interoperable with major data archives and platforms.

Proper citation: ezBIDS (RRID:SCR_025563) Copy   


  • RRID:SCR_025779

    This resource has 1+ mentions.

https://github.com/ccipd/MRQy

Software quality assurance and checking tool for quantitative assessment of magnetic resonance imaging and computed tomography data. Used for quality control of MR imaging data.

Proper citation: MRQy (RRID:SCR_025779) Copy   


  • RRID:SCR_026575

    This resource has 10+ mentions.

https://github.com/Washington-University/HCPpipelines

Software package as set of tools, primarily shell scripts, for processing multi-modal, high-quality MRI images for the Human Connectome Project. Minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space.

Proper citation: HCP Pipelines (RRID:SCR_026575) Copy   


https://sourceforge.net/projects/sivic/

Software framework and application suite for processing and visualization of DICOM MR Spectroscopy data. Through the use of DICOM, SIVIC aims to facilitate the application of MRS in medical imaging studies.

Proper citation: Spectroscopic Imaging, VIsualization, and Computing (SIVIC) (RRID:SCR_027875) Copy   


  • RRID:SCR_004484

    This resource has 1+ mentions.

http://mged.sourceforge.net/ontologies/MGEDontology.php

An ontology including concepts, definitions, terms, and resources for a standardized description of a microarray experiment in support of MAGE v.1. The MGED ontology is divided into the MGED Core ontology which is intended to be stable and in synch with MAGE v.1; and the MGED Extended ontology which adds further associations and classes not found in MAGE v.1. These terms will enable structure queries of elements of the experiments. Furthermore, the terms will also enable unambiguous descriptions of how the experiment was performed.

Proper citation: MGED Ontology (RRID:SCR_004484) Copy   


http://www.imagwiki.nibib.nih.gov/

Special interest group that brings together program officers who have a shared interest in applying modeling and analysis methods to biomedical systems. The meetings are formatted to facilitate an open discussion of what is currently being supported, and for planning future directions in these areas. At each meeting, time is allotted to hear focused presentations from one or two participants to discuss issues relating to modeling and analysis across the government agencies. Discussions also occur online, and participants are informed of talks, conferences and other activities of interest to the group. IMAG recognized that the modeling community is on the forefront of thinking across the biological continuum, rather than just focusing at one scale or level of resolution. In addition IMAG identified a strong desire among modelers to form multi-disciplinary partnerships across varied research communities. Overall Intent of IMAG through the MSM Consortium is: * To develop new methodologies that span across biological scales * To develop multiscale methodologies applicable to biomedical, biological and behavioral research * To develop methodologies within the local multidisciplinary team and within the larger Framework environment * To further promote multiscale modeling through model sharing This wiki contains information relevant to the IMAG (Interagency Modeling and Analysis Group) and the MSM (Multi-scale Modeling Consortium).

Proper citation: Interagency Modeling and Analysis Group and Multi-scale Modeling Consortium Wiki (RRID:SCR_008046) Copy   


  • RRID:SCR_013273

    This resource has 100+ mentions.

http://www.fz-juelich.de/ime/spm_anatomy_toolbox

A MATLAB toolbox which uses three dimensional probabilistic cytoarchitechtonic maps to correlate microscopic, anatomic and functional data of the cerebral cortex. Correlating the activation foci identified in functional imaging studies of the human brain with structural (e.g., cytoarchitectonic) information on the activated areas is a major methodological challenge for neuroscience research. We here present a new approach to make use of three-dimensional probabilistic cytoarchitectonic maps, as obtained from the analysis of human post-mortem brains, for correlating microscopical, anatomical and functional imaging data of the cerebral cortex. We introduce a new, MATLAB based toolbox for the SPM2 software package which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies. The toolbox includes the functionality for the construction of summary maps combining probability of several cortical areas by finding the most probable assignment of each voxel to one of these areas. Its main feature is to provide several measures defining the degree of correspondence between architectonic areas and functional foci. The software, together with the presently available probability maps, is available as open source software to the neuroimaging community. This new toolbox provides an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

Proper citation: SPM Anatomy Toolbox (RRID:SCR_013273) Copy   


  • RRID:SCR_017129

    This resource has 1+ mentions.

https://www.nature.com/articles/s41467-018-03367-w

Nanodroplet processing platform for deep and quantitative proteome profiling of 10 to 100 mammalian cells. It enhances efficiency and recovery of sample processing by downscaling processing volumes.

Proper citation: nanoPOTS (RRID:SCR_017129) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X