Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nitrc.org/projects/caworks
A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.
Proper citation: CAWorks (RRID:SCR_014185) Copy
http://www.radiology.ucsf.edu/cind
Biomedical technology research center that develops and validates new imaging methods for detecting brain abnormalities in neurodegenerative diseases, including Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, as well as epilepsy, depression, and other conditions associated with nerve loss in the brain. As people around the globe live longer, the impact of neurodegenerative diseases is expected to increase further with dire social and economical consequences for societies if no effective treatments are developed soon. The development at CIND is aimed to improve magnetic resonance imaging (MRI). The ultimate goal of the scientific program is to identify imaging markers that improve accuracy in diagnosing neurodegenerative diseases at early stages, achieve more reliable prognoses of disease progression, and facilitate the discovery of effective treatment interventions. In addition to addressing the general needs for studying neurodegenerative diseases, another focus of CIND concerns brain diseases associated with military service and war combat, such as post traumatic stress disorder (PTSD), brain trauma, gulf war illness and the long-term effects of these conditions on the mental health of veterans. The symbiosis between CIND and the Veterans Administration Medical Center in San Francisco makes this program uniquely suited to serve military veterans.
Proper citation: Center for Imaging of Neurodegenerative Diseases (RRID:SCR_001968) Copy
http://icatb.sourceforge.net/fusion/fusion_startup.php
A MATLAB toolbox which implements the joint Independent Component Analysis (ICA), parallel ICA and CCA with joint ICA methods. It is used to to extract the shared information across modalities like fMRI, EEG, sMRI and SNP data. * Environment: Win32 (MS Windows), Gnome, KDE * Operating System: MacOS, Windows, Linux * Programming Language: MATLAB * Supported Data Format: ANALYZE, NIfTI-1
Proper citation: Fusion ICA Toolbox (RRID:SCR_003494) Copy
http://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm
A Windows (Win32) software application for montaging, aligning, tracing, measuring, and reconstructing objects from serial microscopic section images. The software is designed for microscopy in which section resolution is much less than section thickness, such as transmitted electron microscopy (EM) where the resolution is a few nanometers while the section thickness is many tens of nanometers. Reconstruct can easily handle series with hundreds of very large, high-resolution section images. It facilitates image cropping, scaling and alignment. Multiple images can be placed side-by-side to make a montage of a section from a mosaic of images. The alignment of adjacent sections can be rapidly compared by either blending the two sections or by flickering between them. Sections can be moved while blended. Reconstruct aids in the calibration of image size. Images taken at different magnifications can be combined, calibrated and aligned. Tools for tracing and editing of objects on sections are provided. Objects can be surfaced from the traces and previewed in an OpenGL-based 3D scene window. The 3D scene can be saved as a bitmap or as a VRML file.
Proper citation: Synapse Web Reconstruct (RRID:SCR_002716) Copy
http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases
3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.
Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy
https://github.com/nebneuron/neural-ideal
Software package for extracting neural activity codes.
Proper citation: Neural Ideal (RRID:SCR_017448) Copy
https://github.com/Nevermore520/NeuronTools
Software tools for converting data files into persistence diagrams and distance matrices.
Proper citation: Neuron Tools (RRID:SCR_017450) Copy
Project aims to change anatomy atlas by building atlases through open data, community based collaborative development, and free distribution of medical knowledge. Provides access to several 2D and 3D browser based tools.
Proper citation: Open Anatomy Project (RRID:SCR_022141) Copy
https://github.com/QTIM-Lab/DeepNeuro
Software Python package for neuroimaging data. Framework to design and train neural network architectures. Used in medical imaging community to ensure consistent performance of networks across variable users, institutions, and scanners.
Proper citation: DeepNeuro (RRID:SCR_016911) Copy
https://yeatmanlab.github.io/pyAFQ/
Software package focused on automated delineation of major fiber tracts in individual human brains, and quantification of tissue properties within the tracts.Software for automated processing and analysis of diffusion MRI data. Automates tractometry.
Proper citation: Automated Fiber Quantification in Python (RRID:SCR_023366) Copy
http://web.mit.edu/spectroscopy/facilities/lbrc.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Biomedical technology research center that develops basic scientific understanding and new techniques required for advancing clinical applications of lasers and spectroscopy. LBRC merges optical spectroscopy, imaging, scattering, and interferometry techniques to study biophysics and biochemistry of healthy and diseased biological structures from subcellular to entire-organ scale.
Proper citation: Laser Biomedical Research Center (RRID:SCR_000106) Copy
http://rover.bsd.uchicago.edu/lfepr/
Biomedical technology research center that develops instrumentation, analysis techniques, spin probes and spin traps, and methodologies for imaging physiologically relevant aspects of tissue fluids, including high-resolution oxygen maps, with very low frequency electron paramagnetic resonance imaging (EPRI). Novel bridges and high-access, low-field magnet/gradient systems have produced physiologically relevant measurements and accommodate a number of resonant structures. The Center is a consortium between the University of Chicago, the University of Denver, the University of Maryland and Novosibirsk Institute of Organic Chemistry (NIOC), Russia.
Proper citation: Center for EPR Imaging in Vivo Physiology (RRID:SCR_001410) Copy
https://bli.uci.edu/laser-microbeam-program/
Biomedical technology research center dedicated to the use of lasers and optics in biology and medicine with activities in technological research and development, collaborative research, service, training, and dissemination. One of the primary goals of LAMMP is to facilitate translational research by rapidly moving basic science and technology discoveries from blackboard to benchtop to bedside. This is accomplished by combining state of the art optical technologies with specialized resource facilities for cell and tissue engineering, histopathology, pre-clinical animal models, and clinical care. The resource center has been organized into 3 cores: * Microscopy and Microbeam Technologies (MMT) for high-resolution functional imaging and manipulation of living cells and tissues * Medical Translational Technologies (MTT) for non- and minimally-invasive monitoring, treating, and imaging pre-clinical animal models and human subjects, and * Virtual Photonics Technologies (VPT) for developing computational models and methods that advance the performance of biophotonic technologies, and enhance the information content derived from optical measurements. LAMMP cores contain complementary technologies that are capable of quantitatively characterizing, imaging, and perturbing structure and biochemical function in cells and tissues with scalable resolution and depth sensitivity ranging from micrometers to centimeters.
Proper citation: Laser Microbeam and Medical Program (RRID:SCR_001409) Copy
http://www.cmu.edu/nmr-center/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 19,2024. Biomedical Technology Research Center that develops methodologies for the acquisition of morphological, biochemical, cellular, and functional information in living animals using nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS). Novel techniques utilizing multidimensional MR imaging, magnetic resonance microscopy (MRM), and multinuclear in vivo spectroscopy are being applied to a wide range of problems in the biomedical sciences.
Proper citation: Pittsburgh NMR Center for Biomedical Research (RRID:SCR_001408) Copy
http://www.radiology.ucsf.edu/research/labs/hyperpolarized-mri-tech
Biomedical technology research center developing, investigating, and disseminating new hyperpolarized MR techniques, new 13C agents and specialized analysis open-source software for data reconstruction and interpretation. The Technology Research & Development projects will leverage the extensive DNP facilities and experience of the project leaders to develop improved, robust hyperpolarized MRI methods. These technology developments will be driven by Collaborative Projects led by outstanding clinical and basic scientists who aim to use hyperpolarized 13C MRI to accomplish the scientific goals of their funded research. These technical developments will also be disseminated to the Service Project investigators for extramural feedback and then widely to the scientific community via a dedicated website and onsite training. This center will provide state-of-the-art training in this new metabolic imaging field and sponsor a yearly symposium focused on hyperpolarized MR technology development.
Proper citation: Hyperpolarized MRI Technology Resource Center (RRID:SCR_001405) Copy
Collection of comprising deidentified health related data associated with patients who stayed in critical care units of Beth Israel Deaconess Medical Center between 2001 and 2012. Database includes information such as demographics, vital sign measurements made at bedside (~1 data point per hour), laboratory test results, procedures, medications, caregiver notes, imaging reports, and mortality (both in and out of hospital).
Proper citation: Medical Information Mart for Intensive Care-III (RRID:SCR_017384) Copy
http://code.google.com/p/annotare/
A software tool for annotating biomedical investigations and the resulting data, then producing a MAGE-TAB file. This software is a standalone desktop which features: an editor function, an annotation modifier, incorporation of terms from biomedical ontologies, standard templates for common experiment types, a design aid to help create a new document, and a validator that checks for syntactic and semantic violations.
Proper citation: Annotare (RRID:SCR_000319) Copy
http://bmsr.usc.edu/software/targetgene/
MATLAB tool to effectively identify potential therapeutic targets and drugs in cancer using genetic network-based approaches. It can rapidly extract genetic interactions from a precompiled database stored as a MATLAB MAT-file without the need to interrogate remote SQL databases. Millions of interactions involving thousands of candidate genes can be mapped to the genetic network within minutes. While TARGETgene is currently based on the gene network reported in (Wu et al.,Bioinformatics 26:807-813, 2010), it can be easily extended to allow the optional use of other developed gene networks. The simple graphical user interface also enables rapid, intuitive mapping and analysis of therapeutic targets at the systems level. By mapping predictions to drug-target information, TARGETgene may be used as an initial drug screening tool that identifies compounds for further evaluation. In addition, TARGETgene is expected to be applicable to identify potential therapeutic targets for any type or subtype of cancers, even those rare cancers that are not genetically recognized. Identification of Potential Therapeutic Targets * Prioritize potential therapeutic targets from thousands of candidate genes generated from high-throughput experiments using network-based metrics * Validate predictions (prioritization) using user-defined benchmark genes and curated cancer genes * Explore biologic information of selected targets through external databases (e.g., NCBI Entrez Gene) and gene function enrichment analysis Initial Drug Screening * Identify for further evaluation existing drugs and compounds that may act on the potential therapeutic targets identified by TARGETgene * Explore general information on identified drugs of interest through several external links Operating System: Windows XP / Vista / 7
Proper citation: TARGETgene (RRID:SCR_001392) Copy
http://www.fmri.wfubmc.edu/cms/software
Research group based in the Department of Radiology of Wake Forest University School of Medicine devoted to the application of novel image analysis methods to research studies. The ANSIR lab also maintains a fully-automated functional and structural image processing pipeline supporting the image storage and analysis needs of a variety of scientists and imaging studies at Wake Forest. Software packages and toolkits are currently available for download from the ANSIR Laboratory, including: WFU Biological Parametric Mapping Toolbox, WFU_PickAtlas, and Adaptive Staircase Procedure for E-Prime.
Proper citation: Advanced Neuroscience Imaging Research Laboratory Software Packages (RRID:SCR_002926) Copy
http://imaging.indyrad.iupui.edu/projects/SPHARM/
A matlab-based 3D shape modeling and analysis toolkit, and is designed to aid statistical shape analysis for identifying morphometric changes in 3D structures of interest related to different conditions. SPHARM-MAT is implemented based on a powerful 3D Fourier surface representation method called SPHARM, which creates parametric surface models using spherical harmonics.
Proper citation: SPHARM-MAT (RRID:SCR_002545) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.