Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 240 results
Snippet view Table view Download 240 Result(s)
Click the to add this resource to a Collection

http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/JHUtemplate_newuser.html

DTI white matter atlases with different data sources and different image processing. These include single-subject, group-averaged, B0 correction, processed atlases (White Matter Parcellation Map, Tract-probability maps, Conceptual difference between the WMPM and tract-probability maps), and linear or non-linear transformation for automated white matter segmentation. # Adam single-subject white matter atlas (old version): These are electronic versions of atlases published in Wakana et al, Radiology, 230, 77-87 (2004) and MRI Atlas of Human White Matter, Elsevier. ## Original Adam Atlas: 256 x 256 x 55 (FOV = 246 x 246 mm / 2.2 mm slices) (The original matrix is 96x96x55 (2.2 mm isotropic) which is zerofilled to 256 x 256 ## Re-sliced Adam Atlas: 246 x 246 x 121 (1 mm isotropic) ## Talairach Adam: 246 x 246 x 121 (1 mm isotropic) # New Eve single-subject white matter atlas: The new version of the single-subject white matter atlas with comprehensive white matter parcellation. ## MNI coordinate: 181 x 217 x 181 (1 mm isotropic) ## Talairach coordinate: 181 x 217 x 181 (1 mm isotropic) # Group-averaged atlases: This atlas was created from their normal DTI database (n = 28). The template was MNI-ICBM-152 and the data from the normal subjects were normalized by affine transformation. Image dimensions are 181x217x181, 1 mm isotropic. There are two types of maps. The first one is the averaged tensor map and the second one is probabilistic maps of 11 white matter tracts reconstructed by FACT. # ICBM Group-averaged atlases: This atlas was created from ICBM database. All templates follow Radiology convention. You may need to flip right and left when you use image registration software that follows the Neurology convention.

Proper citation: DTI White Matter Atlas (RRID:SCR_005279) Copy   


  • RRID:SCR_006288

    This resource has 1+ mentions.

http://www.civm.duhs.duke.edu/neuro2012ratatlas/

Multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). The atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. To access the atlas, click view supplementary materials in CIVMSpace at the bottom of the following webpage.

Proper citation: Adult Wistar Rat Atlas (RRID:SCR_006288) Copy   


  • RRID:SCR_001503

    This resource has 100+ mentions.

http://toppcluster.cchmc.org/

A tool for performing multi-cluster gene functional enrichment analyses on large scale data (microarray experiments with many time-points, cell-types, tissue-types, etc.). It facilitates co-analysis of multiple gene lists and yields as output a rich functional map showing the shared and list-specific functional features. The output can be visualized in tabular, heatmap or network formats using built-in options as well as third-party software. It uses the hypergeometric test to obtain functional enrichment achieved via the gene list enrichment analysis option available in ToppGene.

Proper citation: ToppCluster (RRID:SCR_001503) Copy   


  • RRID:SCR_006141

    This resource has 10+ mentions.

http://www.pathbase.net/

Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)

Proper citation: Pathbase (RRID:SCR_006141) Copy   


https://neuroscienceblueprint.nih.gov/Resources-Tools/Blueprint-Resources-Tools-Library

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 22, 2023. National initiative to advance biomedical research through data sharing and online collaboration that provides data sharing infrastructure, software tools, strategies and advisory services. Groups may choose whether to share data internally or with external audiences. Hardware and data remain under control of individual user groups.

Proper citation: Biomedical Informatics Research Network (RRID:SCR_005163) Copy   


http://zebrafish.org

Center that supplies access to wild-type, mutant, and transgenic zebrafish lines, EST's/cDNAs, antibodies and fish health services. ZIRC Health Services include diagnostic pathology testing for zebrafish and other small laboratory fish species.

Proper citation: Zebrafish International Resource Center (RRID:SCR_005065) Copy   


https://www.aplysia.earth.miami.edu/

Center where Aplysia californica are cultured and raised for research purposes. Aplysia from the facility serve in research on genomics, human brain function, toxicology for developmental studies, natural products, chemistry for isolation of novel anti-tumor and antibacterial compounds, in the study of transport by digestive tissues and have potential for use in studies of substance addiction and nerve senescence and regeneration.

Proper citation: National Resource for Aplysia (RRID:SCR_008361) Copy   


  • RRID:SCR_015729

    This resource has 1000+ mentions.

https://bioconductor.org/packages/release/bioc/html/oligo.html

Software package to analyze oligonucleotide arrays (expression/SNP/tiling/exon) at probe-level. It currently supports Affymetrix (CEL files) and NimbleGen arrays (XYS files).

Proper citation: oligo (RRID:SCR_015729) Copy   


  • RRID:SCR_016734

    This resource has 10+ mentions.

http://emg.nysbc.org/redmine/projects/appion/wiki/Appion_Home

Software package for processing and analysis of EM images. Appion is integrated with Leginon data acquisition but can also be used stand-alone after uploading images (either digital or scanned micrographs) or particle stacks using a set of provided tools.

Proper citation: Appion Package (RRID:SCR_016734) Copy   


  • RRID:SCR_017038

    This resource has 10+ mentions.

https://github.com/macmanes-lab/BinPacker/blob/master/README

Software tool as de novo trascriptome assembler for RNA-Seq data. Used to assemble full length transcripts by remodeling problem as tracking set of trajectories of items over splicing graph. Input RNA-Seq reads in fasta or fastq format, and ouput all assembled candidate transcripts in fasta format. Operating system Unix/Linux.

Proper citation: BinPacker (RRID:SCR_017038) Copy   


  • RRID:SCR_013439

http://ncmir.ucsd.edu/downloads/montage_rts2000.shtm

Software program for creating montages from multiphoton microscopy.

Proper citation: Montage RTS2000 (RRID:SCR_013439) Copy   


http://www.nitrc.org/projects/nusdast

A repository of schizophrenia neuroimaging data collected from over 450 individuals with schizophrenia, healthy controls and their respective siblings, most with 2-year longitudinal follow-up. The data include neuroimaging data, cognitive data, clinical data, and genetic data.

Proper citation: Northwestern University Schizophrenia Data and Software Tool (NUSDAST) (RRID:SCR_014153) Copy   


  • RRID:SCR_008274

http://www.loni.usc.edu/Software/jViewbox

A portable software framework for medical imaging research. jViewbox consists of a set of Java classes organized under a simple but extensive API that provides the core functionality of 2D image presentation needed by most imaging applications. It follows Java's Swing model closely to make it easy for application developers to build GUIs where end users can use various tools in a tool bar to manipulate the image displays. No optional add-ons or native code is used, which makes jViewBox compatible with any standard Java 2 Runtime Environment (version 1.3 or later).

Proper citation: jViewbox (RRID:SCR_008274) Copy   


http://meme.nbcr.net/meme/cgi-bin/gomo.cgi

Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy   


  • RRID:SCR_008733

http://www.ctspedia.org/do/view/CTSpedia

CTSpedia is a national effort to collect wisdom, tools, educational materials, and other items useful for clinical and translational researchers and to provide timely and useful advice to clinical and translational researchers with specific problems. The CTSpedia is a collaborative vehicle for the CTSA''s Biostatistics/Epidemiology/Research/Design (BERD) Online Resources and Education taskforce to identify and share resources across the national consortium and community researchers world-wide. With the support of the national BERD consortia, the project obtained funding and support from the National Center for Research Resources (NCRR) to expand the original scope and content of CTSpedia and foster collaboration amongst CTSAs. The main goal of CTSpedia.org is to create a definable academic home on the internet for the discipline of clinical and translational sciences across the country and the world. * While the CTSA consortium serves the onsite physical level of the institutions involved, CTSpedia.org seeks to fill the gaps where the network is lacking, and to augment that network as the central hub for the peer to peer sharing of knowledge and resources. * While the CTSA national scope comes to fruition, the international scope of the consortia is more readily facilitated with an online resource like CTSpedia. * Utilizing the collaborative nature of the wiki-style website, CTSpedia.org allows for researchers anywhere in the world to ask questions and receive answers and related information in a timely and efficient manner, overcoming the logistical issues of distance and scheduling. * The streamlined availability of an online resource and knowledge repository will aid in addressing common issues that arise in clinical research, which will filter out consultation requests for minor questions, allowing for CTSA consultants to address more prevalent consultations.

Proper citation: CTSpedia (RRID:SCR_008733) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   


  • RRID:SCR_018764

    This resource has 1+ mentions.

https://rosie.graylab.jhu.edu/docking2

Unified web framework for Rosetta applications. Web interface for selected Rosetta protocols. Web front end for Rosetta software suite. Provides common user interface for Rosetta protocols, stable application programming interface for developers to add additional protocols, flexible back-end to allow leveraging of computer cluster resources shared by Rosetta Commons member institutions, and centralized administration by Rosetta Commons to ensure continuous maintenance. Offers general and speedy paradigm for serverification of Rosetta applications. Lowers barriers to Rosetta use for broader biological community.

Proper citation: ROSIE (RRID:SCR_018764) Copy   


https://cnprc.ucdavis.edu/

Center for investigators studying human health and disease, offering the opportunity to assess the causes of disease, and new treatment methods in nonhuman primate models that closely recapitulate humans. Its mission is to provide interdisciplinary programs in biomedical research on significant human health-related problems in which nonhuman primates are the models of choice.

Proper citation: California National Primate Research Center (RRID:SCR_006426) Copy   


  • RRID:SCR_006831

    This resource has 1+ mentions.

http://www.autopack.org/

A specialized version of autoPack designed to pack biological components together. The current version is optimized to pack molecules into cells with biologically relevant interactions to populate massive cell models with atomic or near-atomic details. Components of the algorithm pack transmembrane proteins and lipids into bilayers, globular molecules into compartments defined by the bilayers (or as exteriors), and fibrous components like microtubules, actin, and DNA.

Proper citation: Cellpack (RRID:SCR_006831) Copy   


  • RRID:SCR_004923

    This resource has 1+ mentions.

http://www.loni.usc.edu/Software/LONI-Inspector

A Java application for reading, displaying, searching, comparing, and exporting metadata from medical image files: AFNI, ANALYZE, DICOM, ECAT, GE, Interfile, MINC, and NIFTI.

Proper citation: LONI Inspector (RRID:SCR_004923) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X