Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://scicrunch.org/scicrunch/data/source/nlx_154697-4/search?q=*
Virtual database indexing brain region gene expression data from mice from: Gene Expression Nervous System Atlas (GENSAT), Allen Mouse Brain Atlas, and Mouse Genome Institute (MGI).
Proper citation: Integrated Brain Gene Expression (RRID:SCR_004197) Copy
THIS RESOURCE IS NO LONGER IN SERVICE; REPLACED BY NEPHROSEQ; A growing database of publicly available renal gene expression profiles, a sophisticated analysis engine, and a powerful web application designed for data mining and visualization of gene expression. It provides unique access to datasets from the Personalized Molecular Nephrology Research Laboratory incorporating clinical data which is often difficult to collect from public sources and mouse data.
Proper citation: Nephromine (RRID:SCR_003813) Copy
http://life.ccs.miami.edu/life/
LIFE search engine contains data generated from LINCS Pilot Phase, to integrate LINCS content leveraging semantic knowledge model and common LINCS metadata standards. LIFE makes LINCS content discoverable and includes aggregate results linked to Harvard Medical School and Broad Institute and other LINCS centers, who provide more information including experimental conditions and raw data. Please visit LINCS Data Portal.
Proper citation: LINCS Information Framework (RRID:SCR_003937) Copy
http://www.broadinstitute.org/mmgp/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 6, 2023. Database providing access and limited analysis to the MMGP portal data sets. These include the MMRC funded reference array comparative genomic hybridization (aCGH) and gene expression data and additional public multiple myeloma datasets. The MMGP will be updated with new features such as additional data and analysis tools as they become available.
Proper citation: Multiple Myeloma Genomics Portal (RRID:SCR_003722) Copy
http://www.hgsc.bcm.tmc.edu/content/hapmap-3-and-encode-3
Draft release 3 for genome-wide SNP genotyping and targeted sequencing in DNA samples from a variety of human populations (sometimes referred to as the HapMap 3 samples). This release contains the following data: * SNP genotype data generated from 1184 samples, collected using two platforms: the Illumina Human1M (by the Wellcome Trust Sanger Institute) and the Affymetrix SNP 6.0 (by the Broad Institute). Data from the two platforms have been merged for this release. * PCR-based resequencing data (by Baylor College of Medicine Human Genome Sequencing Center) across ten 100-kb regions (collectively referred to as ENCODE 3) in 712 samples. Since this is a draft release, please check this site regularly for updates and new releases. The HapMap 3 sample collection comprises 1,301 samples (including the original 270 samples used in Phase I and II of the International HapMap Project) from 11 populations, listed below alphabetically by their 3-letter labels. Five of the ten ENCODE 3 regions overlap with the HapMap-ENCODE regions; the other five are regions selected at random from the ENCODE target regions (excluding the 10 HapMap-ENCODE regions). All ENCODE 3 regions are 100-kb in size, and are centered within each respective ENCODE region. The HapMap 3 and ENCORE 3 data are downloadable from the ftp site.
Proper citation: HapMap 3 and ENCODE 3 (RRID:SCR_004563) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016. Search engine that integrates over 100 curated and publicly contributed data sources and provides integrated views on the genomic, proteomic, transcriptomic, genetic and functional information currently available. Information featured in the database includes gene function, orthologies, gene expression, pathways and protein-protein interactions, mutations and SNPs, disease relationships, related drugs and compounds.
Proper citation: IntegromeDB (RRID:SCR_004620) Copy
A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.
Proper citation: SGD (RRID:SCR_004694) Copy
Database of positive selection based on a rigorous branch-site specific likelihood test. Positive selection is detected using CODEML on all branches of animal gene trees.
Proper citation: Selectome: a Database of Positive Selection (RRID:SCR_004542) Copy
http://exon.cshl.org/cgi-bin/atprobe/atprobe.pl
Arabidopsis thaliana promoter binding element database that focuses on specific binding elements on known genes, found with experimental methods.
Proper citation: AtProbe (RRID:SCR_005412) Copy
Database for identifying orthologous phenotypes (phenologs). Mapping between genotype and phenotype is often non-obvious, complicating prediction of genes underlying specific phenotypes. This problem can be addressed through comparative analyses of phenotypes. We define phenologs based upon overlapping sets of orthologous genes associated with each phenotype. Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype associations reveal many significant phenologs, including novel non-obvious human disease models. For example, phenologs suggest a yeast model for mammalian angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. Phenologs thus create a rich framework for comparing mutational phenotypes, identify adaptive reuse of gene systems, and suggest new disease genes. To search for phenologs, go to the basic search page and enter a list of genes in the box provided, using Entrez gene identifiers for mouse/human genes, locus ids for yeast (e.g., YHR200W), or sequence names for worm (e.g., B0205.3). It is expected that this list of genes will all be associated with a particular system, trait, mutational phenotype, or disease. The search will return all identified model organism/human mutational phenotypes that show any overlap with the input set of the genes, ranked according to their hypergeometric probability scores. Clicking on a particular phenolog will result in a list of genes associated with the phenotype, from which potential new candidate genes can identified. Currently known phenotypes in the database are available from the link labeled ''Find phenotypes'', where the associated gene can be submitted as queries, or alternately, can be searched directly from the link provided.
Proper citation: Phenologs (RRID:SCR_005529) Copy
Database of the international consortium working together to mutate all protein-coding genes in the mouse using a combination of gene trapping and gene targeting in C57BL/6 mouse embryonic stem (ES) cells. Detailed information on targeted genes is available. The IKMC includes the following programs: * Knockout Mouse Project (KOMP) (USA) ** CSD, a collaborative team at the Children''''s Hospital Oakland Research Institute (CHORI), the Wellcome Trust Sanger Institute and the University of California at Davis School of Veterinary Medicine , led by Pieter deJong, Ph.D., CHORI, along with K. C. Kent Lloyd, D.V.M., Ph.D., UC Davis; and Allan Bradley, Ph.D. FRS, and William Skarnes, Ph.D., at the Wellcome Trust Sanger Institute. ** Regeneron, a team at the VelociGene division of Regeneron Pharmaceuticals, Inc., led by David Valenzuela, Ph.D. and George D. Yancopoulos, M.D., Ph.D. * European Conditional Mouse Mutagenesis Program (EUCOMM) (Europe) * North American Conditional Mouse Mutagenesis Project (NorCOMM) (Canada) * Texas A&M Institute for Genomic Medicine (TIGM) (USA) Products (vectors, mice, ES cell lines) may be ordered from the above programs.
Proper citation: International Knockout Mouse Consortium (RRID:SCR_005574) Copy
A publicly available database of Transposed elements (TEs) which are located within protein-coding genes of 7 organisms: human, mouse, chicken, zebrafish, fruilt fly, nematode and sea squirt. Using TranspoGene the user can learn about the many aspects of the effect these TEs have on their hosting genes, such as: exonization events (including alternative splicing-related data), insertion of TEs into introns, exons, and promoters, specific location of the TE over the gene, evolutionary divergence of the TE from its consensus sequence and involvement in diseases. TranspoGene database is quickly searchable through its website, enables many kinds of searches and is available for download. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. The TranspoGene and microTranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome.
Proper citation: TranspoGene (RRID:SCR_005634) Copy
http://www.gene-regulation.com/pub/databases.html#transfac
Manually curated database of eukaryotic transcription factors, their genomic binding sites and DNA binding profiles. Used to predict potential transcription factor binding sites.
Proper citation: TRANSFAC (RRID:SCR_005620) Copy
http://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html
A text mining derived database with focus on extracting and classifying gene-disease associations with respect to several biomolecular conditions. It uses a machine learning based algorithm to extract semantic gene-disease relations from a textual source of interest. The semantic gene-disease relations were extracted with F-measures of 78. More specifically, the textual source utilized here originates from Entrez Gene''''s GeneRIF (Gene Reference Into Function) database (Mitchell, et al., 2003). LHGDN was created based on a GeneRIF version from March 31st, 2009, consisting of 414241 phrases. These phrases were further restricted to the organism Homo sapiens, which resulted in a total of 178004 phrases. We benchmark our approach on two different tasks. The first task is the identification of semantic relations between diseases and treatments. The available data set consists of manually annotated PubMed abstracts. The second task is the identification of relations between genes and diseases from a set of concise phrases, so-called GeneRIF (Gene Reference Into Function) phrases. In our experimental setting, we do not assume that the entities are given, as is often the case in previous relation extraction work. Rather the extraction of the entities is solved as a subproblem. Compared with other state-of-the-art approaches, we achieve very competitive results on both data sets. To demonstrate the scalability of our solution, we apply our approach to the complete human GeneRIF database. The resulting gene-disease network contains 34758 semantic associations between 4939 genes and 1745 diseases. The gene-disease network is publicly available as a machine-readable RDF graph. We extend the framework of Conditional Random Fields towards the annotation of semantic relations from text and apply it to the biomedical domain. Our approach is based on a rich set of textual features and achieves a performance that is competitive to leading approaches. The model is quite general and can be extended to handle arbitrary biological entities and relation types. The resulting gene-disease network shows that the GeneRIF database provides a rich knowledge source for text mining.
Proper citation: Literature-derived human gene-disease network (RRID:SCR_005653) Copy
A knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
Proper citation: BiGG Database (RRID:SCR_005809) Copy
http://igdb.nsclc.ibms.sinica.edu.tw/
IGDB.NSCLC database is aiming to facilitate and prioritize identified lung cancer genes and microRNAs for pathological and mechanistic studies of lung tumorigenesis and for developing new strategies for clinical interventions. We integrated and curated various lung cancer genomic datasets to present # lung cancer genes with somatic mutations, experimental supports and statistic significance in association with clinicopathological features; # genomic alterations with copy number alterations (CNA) detected by high density SNP arrays, gain or loss regions detected by arrayed comparative genome hybridization (aCGH), and loss of heterozygosity (LOH) detected by microsatellite markers; # aberrant expression of genes and microRNAs detected by various microarrays. IGDB.NSCLC database provides user friendly interfaces and searching functions to display multiple layers of evidence for detecting lung cancer target genes and microRNAs, especially emphasizing on concordant alterations: # genes with altered expression located in the CNA regions; # microRNAs with altered expression located in the CNA regions; # somatic mutation genes located in the CNA regions; and # genes associated with clinicopathological features located in the CNA regions. These concordant altered genes and miRNAs should be prioritized for further basic and clinical studies.
Proper citation: IGDB.NSCLC (RRID:SCR_006048) Copy
http://www.sanger.ac.uk/cgi-bin/teams/team30/arnie
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Database that integrates the extracellular protein interaction network generated in our lab using AVEXIS technology with spatiotemporal expression patterns for all genes in the network. The tool allows users to browse the network by clicking on individual proteins, or by specifying the spatiotemporal parameters. Clicking on connector lines will allow users to compare stage-matched expression patterns for genes encoding interacting proteins. Additionally, users can rapidly search for their genes in the network using the BLAST server provided.
Proper citation: ARNIE (RRID:SCR_000514) Copy
http://lifespandb.sageweb.org/
Database that collects published lifespan data across multiple species. The entire database is available for download in various formats including XML, YAML and CSV.
Proper citation: Lifespan Observations Database (RRID:SCR_001609) Copy
Allows annotation of gene expression at all stages of development and tissue types (including sub cellular location) using standard Drosophila anatomy ontology. All methods of input use a controlled vocabulary to ensure data integrity.
Proper citation: Flannotator (RRID:SCR_001608) Copy
http://cddb.nhlbi.nih.gov/cddb/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This database is intended to serve as a learning tool to obtain curated information for the design of microarray targets to scan collecting duct tissues (human, rat, mouse). The database focuses on regulatory and transporter proteins expressed in the collecting duct, but when collecting duct proteins are a member of a larger family of proteins, common additional members of the family are included even if they have not been demonstrated to be expressed in the collecting duct. An Internet-accessible database has been devised for major collecting duct proteins involved in transport and regulation of cellular processes. The individual proteins included in this database are those culled from literature searches and from previously published studies involving cDNA arrays and serial analysis of gene expression (SAGE). Design of microarray targets for the study of kidney collecting duct tissues is facilitated by the database, which includes links to curated base pair and amino acid sequence data, relevant literature, and related databases. Use of the database is illustrated by a search for water channel proteins, aquaporins, and by a subsequent search for vasopressin receptors. Links are shown to the literature and to sequence data for human, rat, and mouse, as well as to relevant web-based resources. Extension of the database is dynamic and is done through a maintenance interface. This permits creation of new categories, updating of existing entries, and addition of new ones. CDDB is a database that organizes lists of genes found in collecting duct tissues from three mammalian species: human, rat, and mouse. Proteins are divided into categories by family relationships and functional classification, and each category is assigned a section in the database. Each section includes links to the literature and to sequence information for genes, proteins, expressed sequence tags, and related information. The user can peruse a section or use a search engine at the bottom of the web page to search the database for a name or abbreviation or for a link to a sequence. Each entry in the database includes links to relevant papers in the kidney and collecting duct literature. It uses links to PubMed to generate MEDLINE searches for retrieval of references. In addition, each entry includes links to curated sequence data available in LocusLink. Individual links are made to sequence and protein data for human, rat, and mouse. Links are then added as curated sequences become available for proteins identified in the renal collecting duct and for proteins identified in kidney and similar in function or homologous to proteins identified in the collecting duct.
Proper citation: Collecting Duct Database (RRID:SCR_000759) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.