Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 786 results
Snippet view Table view Download 786 Result(s)
Click the to add this resource to a Collection

http://www.oasis-brains.org/

Project aimed at making neuroimaging data sets of brain freely available to scientific community. By compiling and freely distributing neuroimaging data sets, future discoveries in basic and clinical neuroscience are facilitated.

Proper citation: Open Access Series of Imaging Studies (RRID:SCR_007385) Copy   


http://ibvd.virtualbrain.org/

A database of brain neuroanatomic volumetric observations spanning various species, diagnoses, and structures for both individual and group results. A major thrust effort is to enable electronic access to the results that exist in the published literature. Currently, there is quite limited electronic or searchable methods for the data observations that are contained in publications. This effort will facilitate the dissemination of volumetric observations by making a more complete corpus of volumetric observations findable to the neuroscience researcher. This also enhances the ability to perform comparative and integrative studies, as well as metaanalysis. Extensions that permit pre-published, non-published and other representation are planned, again to facilitate comparative analyses. Design strategy: The principle organizing data structure is the "publication". Publications report on "groups" of subjects. These groups have "demographic" information as well as "volume" information for the group as a whole. Groups are comprised of "individuals", which also have demographic and volume information for each of the individuals. The finest-grained data structure is the "individual volume record" which contains a volume observation, the units for the observation, and a pointer to the demographic record for individual upon which the observation is derived. A collection of individual volumes can be grouped into a "group volume" observation; the group can be demographically characterized by the distribution of individual demographic observations for the members of the group.

Proper citation: Internet Brain Volume Database (RRID:SCR_002060) Copy   


  • RRID:SCR_003179

    This resource has 1+ mentions.

http://epilepsy.uni-freiburg.de/database

A comprehensive database for human surface and intracranial EEG data that is suitable for a broad range of applications e.g. of time series analyses of brain activity. Currently, the EU database contains annotated EEG datasets from more than 200 patients with epilepsy, 50 of them with intracranial recordings with up to 122 channels. Each dataset provides EEG data for a continuous recording time of at least 96 hours (4 days) at a sample rate of up to 2500 Hz. Clinical patient information and MR imaging data supplement the EEG data. The total duration of EEG recordings included execeeds 30000 hours. The database is composed of different modalities: Binary files with EEG recording / MR imaging data and Relational database for supplementary meta data.

Proper citation: EPILEPSIE database (RRID:SCR_003179) Copy   


http://www.nitrc.org/projects/stark_aging/

Behavioral and imaging data from about 120 participants aged 18-89. Data were collected as part of a grant to use high-resolution imaging and advanced behavioral tasks to understand how aging affects the hippocampus and how this is related to age-related cognitive decline. The full dataset includes traditional neuropsycholgical measures, hippocampal-specific behavioral measures, whole-brain DTI, high-resolution DTI of the medial temporal lobes, and structural MRI including segmentation of grey/white/CSF, of cortical regions and of hippocampal subfields.

Proper citation: Stark Cross-Sectional Aging (RRID:SCR_014171) Copy   


http://www.nitrc.org/projects/ymdti/

A dataset which contains diffusion tensor images of 93 healthy, young male subjects.

Proper citation: YMDTI: Diffusion Tensor Images of Healthy Young Males (RRID:SCR_014183) Copy   


http://www.nitrc.org/projects/hfh_t1_hp_seg1/

Shared dataset which consists of skull-stripped T1 MRI images and segmented hippocampi of 163 Temporal Lobe Epilepsy (TLE) patients. The T1 and hippocampal segmentation data of TLE patients are uploaded in three separate datasets which can be accessed from the main site.

Proper citation: Epilepsy T1 and Hippocampal Segmentation Datasets (RRID:SCR_014926) Copy   


  • RRID:SCR_001438

    This resource has 1+ mentions.

http://www.nitrc.org/projects/philips_users/

Communnity project to help support the efforts of investigators using Philips Healthcare systems. This clearingsite helps users find forums, mailinglists, etc. that support this community. If you have suggestions for inclusion, let the project admin know!

Proper citation: Philips Users Community (RRID:SCR_001438) Copy   


http://www.nitrc.org/projects/srsn/

Forum (Spanish) for sharing information and knowledge on this network, a collaboration between different research groups in Spain and national and international centres. (Foro para compartir datos y conocimiento sobre esta red. Se constituye el Spanish Resting State Network como una colaboracion entre distintos grupos de investigacion de Espa������a y centros nacionales e internacionales.)

Proper citation: Spanish Resting State Network (RRID:SCR_002562) Copy   


http://www.nitrc.org/projects/multimodal/

Scan-rescan imaging sessions on 21 healthy volunteers (no history of neurological disease) intended to be a resource for statisticians and imaging scientists to be able to quantify the reproducibility of their imaging methods using data available from a generic 1 hour session at 3T. Imaging modalities include MPRAGE, FLAIR, DTI, resting state fMRI, B0 and B1 field maps, ASL, VASO, quantitative T1 mapping, quantitative T2 mapping, and magnetization transfer imaging. All data have been converted to NIFTI format. Please cite: Bennett. A. Landman, Alan J. Huang, Aliya Gifford, Deepti S. Vikram, Issel Anne L. Lim, Jonathan A.D. Farrell, John A. Bogovic, Jun Hua, Min Chen, Samson Jarso, Seth A. Smith, Suresh Joel, Susumu Mori, James J. Pekar, Peter B. Barker, Jerry L. Prince, and Peter C.M. van Zijl. ?Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study?, NeuroImage. (2010) NIHMS/PMC:252138 doi:10.1016/j.neuroimage.2010.11.047

Proper citation: Multi-Modal MRI Reproducibility Resource (RRID:SCR_002442) Copy   


http://www.nitrc.org/projects/msseg

Training material for the MS lesion segmentation challenge 2008 to compare different algorithms to segment the MS lesions from brain MRI scans. Data used for the workshop is composed of 54 brain MRI images and represents a range of patients and pathology which was acquired from Children's Hospital Boston and University of North Carolian. Data has initially been randomized into three groups: 20 training MRI images, 24 testing images for the qualifying and 8 for the onsite contest at the 2008 workshop. The downloadable online database consists now of the training images (including reference segmentations) and all the 32 combined testing images (without segmentations). The naming has not been changed in comparison to the workshop compeition in order to allow easy comparison between the workshop papers and the online database papers. One dataset has been removed (UNC_test1_Case02) due to considerable motion present only in its T2 image (without motion artifacts in T1 and FLAIR). Such a dataset unfairly penalizes methods that use T2 images versus methods that don't use the T2 image. Currently all cases have been segmented by expert raters at each institution. They have significant intersite variablility in segmentation. MS lesion MRI image data for this competition was acquired seperately by Children's Hospital Boston and University of North Carolina. UNC cases were acquired on Siemens 3T Allegra MRI scanner with slice thickness of 1mm and in-plane resolution of 0.5mm. To ease the segmentation process all data has been rigidly registered to a common reference frame and resliced to isotrophic voxel spacing using b-spline based interpolation. Pre-processed data is stored in NRRD format containing an ASCII readable header and a separate uncompressed raw image data file. This format is ITK compatible. If you want to join the competition, you can download data set from links here, and submit your segmentation results at http://www.ia.unc.edu/MSseg after registering your team. They require team name, password, and email address for future contact. Once experiment is completed, you can submit the segmentation data in a zip file format. Please refer submission page for uploading data format.

Proper citation: MS lesion segmentation challenge 2008 (RRID:SCR_002425) Copy   


  • RRID:SCR_002793

    This resource has 10+ mentions.

http://www.cognitiveatlas.org/

Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.

Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_009493

    This resource has 1+ mentions.

http://www.nitrc.org/projects/hdni/

An international effort to establish resources necessary to study the application of neuroimaging measures as (surrogate) biomarkers in Huntington''s Disease (HD). The primary aims are to develop and apply software tools, imaging protocols, quality control procedures, data archiving, data distribution, and participation guidelines that will accelerate existing and prospective imaging studies.

Proper citation: HD Neuro-Informatics (RRID:SCR_009493) Copy   


  • RRID:SCR_009631

http://www.nitrc.org/projects/nitrc

NITRC-wide community facilities: Forums, Wiki, Tracker, and News.

Proper citation: NITRC Community (RRID:SCR_009631) Copy   


http://www.nitrc.org/projects/colin3t7t

High-field extension of the Colin27 single-subject atlas with additional high-resolution, quantitative, averaged scans at both 3T and 7T.

Proper citation: Colin 3T/7T High-resolution Atlas (RRID:SCR_000160) Copy   


  • RRID:SCR_002439

    This resource has 10+ mentions.

http://mindboggle.info/data.html

Complete set of free, publicly accessible, downloadable atlases, templates, and individual manually labeled brain image data, the largest collection of publicly available, manually labeled human brains in the world! http://journal.frontiersin.org/article/10.3389/fnins.2012.00171/full

Proper citation: Mindboggle-101 atlases (RRID:SCR_002439) Copy   


  • RRID:SCR_002570

    This resource has 1+ mentions.

http://www.nitrc.org/projects/primate_atlas/

Symmetric atlas of the primate brain created using 18 cases of rhesus macaques aged 16-34 months. It includes the T1-weighted image (with and without skull), and also tissue segmentation probability maps (white matter, gray matter, CSF, rest), subcortical structures segmentation (amygdala, caudate, hippocampus, pallidus, putamen), and a lobar parcellation map. You can find more details about the creation of this atlas in the following paper : M. Styner, R. Knickmeyer, S. Joshi, C. Coe, S. J. Short, and J. Gilmore. Automatic brain segmentation in rhesus monkeys. In Proc SPIE Vol 6512, Medical Imaging, 2007, pp. 65122 L1-8

Proper citation: UNC Primate Brain Atlas (RRID:SCR_002570) Copy   


  • RRID:SCR_002569

    This resource has 1+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases

3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.

Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy   


http://www.nitrc.org/projects/saibn/

A 3D stereoscopic (anaglyph method) full brain functional connectivity atlas created using a parcellation atlas published by Craddock et al. (2012). Using 3D Slicer 3.6.3 and the two hundred Region of Interest (ROI) version of the Craddock atlas, 200 grayscale surface models were created using a z-stat threshold > 2.3, and each surface model was processed with a surface decimation algorithm, smoothed with the Taubin algorithm and without surface normals. For improved visualization of the functional connectivity networks and their relative anatomical position, the surface model of five subcortical anatomical structures (corpus callosum, bilateral caudate, pallidum, putamen, thalamus, amygdala and hippocampus) were included in SAIBN. These surfaces were created with 3D Slicer using the segmentation computed with Freesurfer v. 5.1. The viewer should use red-cyan glasses to see the 3D stereoscopic effect using 3D Slicer (version 3.6.3, http://www.slicer.org/pages/Special:SlicerDownloads).

Proper citation: Stereoscopic Atlas of Intrinsic Brain Networks (RRID:SCR_002568) Copy   


  • RRID:SCR_004096

    This resource has 10+ mentions.

http://www.mouseconnectome.org/

Three-dimensional digital connectome atlas of the C57Black/6J mouse brain and catalog of neural tracer injection cases, which will eventually cover the entire brain. Serial sections of each case are available to view at 10x magnification in the interactive iConnectome viewer. The Image Gallery provides a glimpse into some of the highlights of their data set. Representative images of multi-fluorescent tracer labeling can be viewed, while more in depth examination of these and all other cases can be performed in the iConnectome viewer. Phase 1 of this project involves generating a physical map of the basic global wiring diagram by applying proven, state of the art experimental circuit tracing methods systematically, uniformly, and comprehensively to the structural organization of all major neuronal pathways in the mouse brain. Connectivity imaging data for the whole mouse brain at cellular resolution will be presented within a standard 3D anatomic frame available through the website and accompanied by a comprehensive searchable online database. A Phase 2 goal for the future will allow users to view, search, and generate driving direction-like roadmaps of neuronal pathways linking any and all structures in the nervous system. This could be looked on as a pilot project for more ambitious projects in species with larger brains, such as human, and for providing a reliable framework for more detailed local circuitry mapping projects in the mouse.

Proper citation: Mouse Connectome Project (RRID:SCR_004096) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X