Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ncbi.nlm.nih.gov/gap
Database developed to archive and distribute clinical data and results from studies that have investigated interaction of genotype and phenotype in humans. Database to archive and distribute results of studies including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits.
Proper citation: NCBI database of Genotypes and Phenotypes (dbGap) (RRID:SCR_002709) Copy
http://www.ncbi.nlm.nih.gov/Genbank/
NIH genetic sequence database that provides annotated collection of all publicly available DNA sequences for almost 280 000 formally described species (Jan 2014) .These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of International Nucleotide Sequence Database Collaboration and daily data exchange with European Nucleotide Archive (ENA) and DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through NCBI Entrez retrieval system, which integrates data from major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of GenBank database are available by FTP.
Proper citation: GenBank (RRID:SCR_002760) Copy
http://www.ebi.ac.uk/arrayexpress/
International functional genomics data collection generated from microarray or next-generation sequencing (NGS) platforms. Repository of functional genomics data supporting publications. Provides genes expression data for reuse to the research community where they can be queried and downloaded. Integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Contains a subset of curated and re-annotated Archive data which can be queried for individual gene expression under different biological conditions across experiments. Data collected to MIAME and MINSEQE standards. Data are submitted by users or are imported directly from the NCBI Gene Expression Omnibus.
Proper citation: ArrayExpress (RRID:SCR_002964) Copy
The Global Proteome Machine Organization was set up so that scientists involved in proteomics using tandem mass spectrometry could use that data to analyze proteomes. The projects supported by the GPMO have been selected to improve the quality of analysis, make the results portable and to provide a common platform for testing and validating proteomics results. The Global Proteome Machine Database was constructed to utilize the information obtained by GPM servers to aid in the difficult process of validating peptide MS/MS spectra as well as protein coverage patterns. This database has been integrated into GPM server pages, allowing users to quickly compare their experimental results with the best results that have been previously observed by other scientists.
Proper citation: Global Proteome Machine Database (GPM DB) (RRID:SCR_006617) Copy
https://www.fludb.org/brc/home.spg?decorator=influenza
The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.
Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy
http://www.autoimmunitycenters.org/
Nine centers that conduct clinical trials and basic research on new immune-based therapies for autoimmune diseases. This program enhances interactions between scientists and clinicians in order to accelerate the translation of research findings into medical applications. By promoting better coordination and communication, and enabling limited resources to be pooled, ACEs is one of NIAID''''s primary vehicles for both expanding our knowledge and improving our ability to effectively prevent and treat autoimmune diseases. This coordinated approach incorporates key recommendations of the NIH Autoimmune Diseases Research Plan and will ensure progress in identifying new and highly effective therapies for autoimmune diseases. ACEs is advancing the search for effective treatments through: * Diverse Autoimmunity Expertise Medical researchers at ACEs include rheumatologists, neurologists, gastroenterologists, and endocrinologists who are among the elite in their respective fields. * Strong Mechanistic Foundation ACEs augment each clinical trial with extensive basic studies designed to enhance understanding of the mechanisms responsible for tolerance initiation, maintenance, or loss, including the role of cytokines, regulatory T cells, and accessory cells, to name a few. * Streamlined Patient Recruitment The cooperative nature of ACEs helps scientists recruit patients from distinct geographical areas. The rigorous clinical and basic science approach of ACEs helps maintain a high level of treatment and analysis, enabling informative comparisons between patient groups.
Proper citation: Autoimmunity Centers of Excellence (RRID:SCR_006510) Copy
http://www.ebi.ac.uk/pdbe/emdb/
Repository for electron microscopy density maps of macromolecular complexes and subcellular structures at Protein Data Bank in Europe. Covers techniques, including single-particle analysis, electron tomography, and electron (2D) crystallography.
Proper citation: Electron Microscopy Data Bank at PDBe (MSD-EBI) (RRID:SCR_006506) Copy
https://repository.niddk.nih.gov/home/
NIDDK Central Repositories are two separate contract funded components that work together to store data and samples from significant, NIDDK funded studies. First component is Biorepository that gathers, stores, and distributes biological samples from studies. Biorepository works with investigators in new and ongoing studies as realtime storage facility for archival samples.Second component is Data Repository that gathers, stores and distributes incremental or finished datasets from NIDDK funded studies Data Repository helps active data coordinating centers prepare databases and incremental datasets for archiving and for carrying out restricted queries of stored databases. Data Repository serves as Data Coordinating Center and website manager for NIDDK Central Repositories website.
Proper citation: NIDDK Central Repository (RRID:SCR_006542) Copy
http://www.informatics.jax.org/expression.shtml
Community database that collects and integrates the gene expression information in MGI with a primary emphasis on endogenous gene expression during mouse development. The data in GXD are obtained from the literature, from individual laboratories, and from large-scale data providers. All data are annotated and reviewed by GXD curators. GXD stores and integrates different types of expression data (RNA in situ hybridization; Immunohistochemistry; in situ reporter (knock in); RT-PCR; Northern and Western blots; and RNase and Nuclease s1 protection assays) and makes these data freely available in formats appropriate for comprehensive analysis. There is particular emphasis on endogenous gene expression during mouse development. GXD also maintains an index of the literature examining gene expression in the embryonic mouse. It is comprehensive and up-to-date, containing all pertinent journal articles from 1993 to the present and articles from major developmental journals from 1990 to the present. GXD stores primary data from different types of expression assays and by integrating these data, as data accumulate, GXD provides increasingly complete information about the expression profiles of transcripts and proteins in different mouse strains and mutants. GXD describes expression patterns using an extensive, hierarchically-structured dictionary of anatomical terms. In this way, expression results from assays with differing spatial resolution are recorded in a standardized and integrated manner and expression patterns can be queried at different levels of detail. The records are complemented with digitized images of the original expression data. The Anatomical Dictionary for Mouse Development has been developed by our Edinburgh colleagues, as part of the joint Mouse Gene Expression Information Resource project. GXD places the gene expression data in the larger biological context by establishing and maintaining interconnections with many other resources. Integration with MGD enables a combined analysis of genotype, sequence, expression, and phenotype data. Links to PubMed, Online Mendelian Inheritance in Man (OMIM), sequence databases, and databases from other species further enhance the utility of GXD. GXD accepts both published and unpublished data.
Proper citation: Gene Expression Database (RRID:SCR_006539) Copy
Annual report, standard analysis files and an online query system from the national data registry on the end-stage renal disease (ESRD) population in the U.S., including treatments and outcomes. The Annual Data Report is divided into two parts. The Atlas section displays data using graphs and charts. Specific chapters address trends in ESRD patient populations, quality of ESRD care, kidney transplantation outcomes, costs of ESRD care, Healthy People 2010 objectives, chronic kidney disease, pediatric ESRD, and cardiovascular disease special studies. The Reference Tables are devoted entirely to the ESRD population. The RenDER (Renal Data Extraction and Referencing) online data query system allows users to build data tables and maps for the ESRD population. National, state, and county level data are available. USRDS staff collaborates with members of Centers for Medicare & Medicaid Services (CMS), the United Network for Organ Sharing (UNOS), and the ESRD networks, sharing datasets and actively working to improve the accuracy of ESRD patient information.
Proper citation: United States Renal Data System (RRID:SCR_006699) Copy
http://www.niaid.nih.gov/topics/transplant/research/Pages/fundedBasics.aspx#NHPTCSP
Cooperative program for research on nonhuman primate models of kidney, islet, heart, and lung transplantation evaluating the safety and efficacy of existing and new treatment regimens that promote the immune system''''s acceptance of a transplant and to understand why the immune system either rejects or does not reject a transplant. This program bridges the critical gap between small-animal research and human clinical trials. The program supports research into the immunological mechanisms of tolerance induction and development of surrogate markers for the induction, maintenance, and loss of tolerance.
Proper citation: Nonhuman Primate Transplantation Tolerance Cooperative Study Group (RRID:SCR_006847) Copy
http://diabetes.niddk.nih.gov/dm/pubs/america/
A compilation and assessment of epidemiologic, public health, and clinical data on diabetes and its complications in the United States. Published by the National Diabetes Data Group of the National Institute of Diabetes and Digestive and Kidney Diseases, the book contains 36 chapters organized in five areas: * the descriptive epidemiology of diabetes in the United States based on national surveys and community-based studies, including prevalence, incidence, sociodemographic and metabolic characteristics, risk factors for developing diabetes, and mortality * the myriad complications that affect patients with diabetes * characteristics of therapy and medical care for diabetes * economic aspects, including health insurance and health care costs * diabetes in special populations, including African Americans, Hispanics, Asian and Pacific Islanders, Native Americans, and pregnant women. Diabetes in America, 2nd Edition, has been designed to serve as a reliable scientific resource for assessing the scope and impact of diabetes and its complications, determining health policy and priorities in diabetes, and identifying areas of need in research. The intended audience includes health policy makers at the local and Federal levels who need a sound quantitative base of knowledge to use in decision making; clinicians who need to know the probability that their patients will develop diabetes and the prognosis of the disease for complications and premature mortality; persons with diabetes and their families who need sound information on which to make decisions about their life with diabetes; and the research community which needs to identify areas where important scientific knowledge is lacking.
Proper citation: Diabetes in America (RRID:SCR_006754) Copy
Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.
Proper citation: PeptideAtlas (RRID:SCR_006783) Copy
Information dissemination service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) established to increase knowledge and understanding about diseases of the kidneys and urologic system among people with these conditions and their families, health care professionals, and the general public: online, in booklets and fact sheets, by email, and over the phone. To carry out this mission, NKUDIC works closely with a coordinating panel of representatives from Federal agencies; voluntary organizations on the national level; professional groups; and State health departments to identify and respond to informational needs about kidney and urologic diseases. NKUDIC provides the following informational products and services: * Response to inquiries about kidney and urologic diseases-ranging from information about available patient and professional education materials to statistical data. By phone (8:30 a.m. to 5 p.m. eastern time, M-F), fax, mail, and email. * Publications about specific kidney and urologic diseases, provided free of copyright, in varying reading levels. Available online or as booklets and brochures. (See our Publications Catalog.) NKUDIC also sends publications to health fairs and community events. Please contact us for more information. * Referrals to health professionals through the National Library of Medicine''''s MEDLINEplus includes a consumer-friendly listing of organizations that will assist you in your search for physicians and other health professionals. * Exhibits at professional meetings specific to kidney and urologic diseases, as well as cross-cutting professional meetings. NKUDIC exhibits at 11 professional meetings, each year, including Society of Urologic Nurses and Associates, American Urologic Association, American Society of Nephrology, National Kidney Foundation, Polycystic Kidney Disease Research Foundation, American Academy of Family Physicians, American Academy of Physician Assistants, American Nurses Association, and the National Conference for Nurse Practitioners.
Proper citation: National Kidney and Urologic Diseases Information Clearinghouse (RRID:SCR_006842) Copy
https://www.ddbj.nig.ac.jp/jga/index-e.html
A service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The JGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the JGA. Once processed, all data are encrypted. The JGA accepts only de-identified data approved by JST-NBDC. The JGA implements access-granting policy whereby the decisions of who will be granted access to the data resides with the JST-NBDC. After data submission the JGA team will process the data into databases and archive the original data files. The accepted data types include manufacturer-specific raw data formats from the array-based and new sequencing platforms. The processed data such as the genotype and structural variants or any summary level statistical analyses from the original study authors are stored in databases. The JGA also accepts and distributes any phenotype data associated with the samples. For other human biological data, please contact the NBDC human data ethical committee.
Proper citation: Japanese Genotype-phenotype Archive (JGA) (RRID:SCR_003118) Copy
http://www.emdataresource.org/
Portal for deposition and retrieval of cryo electron microscopy (3DEM) density maps, atomic models, and associated metadata. Global resource for 3 Dimensional Electron Microscopy structure data archiving and retrieval, news, events, software tools, data standards, validation methods.
Proper citation: EMDataResource.org (RRID:SCR_003207) Copy
Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.
Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy
Computing resources structural biologists need to discover the shapes of the molecules of life, it provides access to web-enabled structural biology applications, data sharing facilities, biological data sets, and other resources valuable to the computational structural biology community. Consortium includes X-ray crystallography, NMR and electron microscopy laboratories worldwide.SBGrid Service Center is located at Harvard Medical School.SBGrid's NIH-compliant Service Center supports SBGrid operations and provides members with access to Software Maintenance, Computing Access, and Training. Consortium benefits include: * remote management of your customized collection of structural biology applications on Linux and Mac workstations; * access to commercial applications exclusively licensed to members of the Consortium, such as NMRPipe, Schrodinger Suite (limited tokens) and the Incentive version of Pymol; remote management of supporting scientific applications (e.g., bioinformatics, computational chemistry and utilities); * access to SBGrid seminars and events; and * advice about hardware configurations, operating system installations and high performance computing. Membership is restricted to academic/non-profit research laboratories that use X-ray crystallography, 2D crystallography, NMR, EM, tomography and other experimental structural biology technologies in their research. Most new members are fully integrated with SBGrid within 2 weeks of the initial application.
Proper citation: Structural Biology Grid (RRID:SCR_003511) Copy
http://www.cellimagelibrary.org/
Freely accessible, public repository of vetted and annotated microscopic images, videos, and animations of cells from a variety of organisms, showcasing cell architecture, intracellular functionalities, and both normal and abnormal processes. Explore by Cell Process, Cell Component, Cell Type or Organism. The Cell includes images acquired from historical and modern collections, publications, and by recruitment.
Proper citation: Cell Image Library (CIL) (RRID:SCR_003510) Copy
Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.
Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.