Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) supports researchers and our surrounding community in their pursuit of answers that will lead to improved diagnosis and care for persons with Alzheimer disease (AD). The Center is committed to the long-term goal of finding a way to effectively treat and prevent AD. The Knight ADRC facilitates advanced research on the clinical, genetic, neuropathological, neuroanatomical, biomedical, psychosocial, and neuropsychological aspects of Alzheimer disease, as well as other related brain disorders.
Proper citation: Washington University School of Medicine Knight Alzheimers Disease Research Center (RRID:SCR_000210) Copy
http://jaxmice.jax.org/list/ra1642.html
Produce new neurological mouse models that could serve as experimental models for the exploration of basic neurobiological mechanisms and diseases. The impetus for the program resulted from the recognition that: * The value of genomic data would remain limited unless more information about the functionality of its individual components became available. * The task of linking genes to specific behavior would best be accomplished by employing a combination of different approaches. In an effort to complement already existing programs, the Neuroscience Mutagenesis Facility decided to use: a random, genome-wide approach to mutagenesis, i.e.N-ethyl-N-nitrosourea (ENU) as the mutagen; a three-generation back-cross breeding scheme to focus on the detection of recessive mutations; behavioral screens selective for the detection of phenotypes deemed useful for the program goals. The resulting mutant mouse lines have been available to the scientific community for the last five years and over 700 NMF mice have been sent to interested investigators for research; these mutant mouse lines will remain available as frozen embryos (which can be re-derived on request) and can be ordered through the JAX customer service at 1-800-422-6423 (or 207-288-5845). The results of the work of the Neuroscience Mutagenesis Facility and that of two other neurogenesis centers, i.e. The Neurogenomics Project at Northwestern University, and the Neuromutagenesis Project of the Tennessee Mouse Genome Consortium, can also be seen at Neuromice.org, a common web site of these three research centers; in addition, information about all mutants produced by these groups has been recorded in MGI.
Proper citation: JAX Neuroscience Mutagenesis Facility (RRID:SCR_007437) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-colonies-handbook
Colonies of barrier-raised, Specific Pathogen-Free (SPF) rodents under contractual arrangement with commercial vendors, specifically for use in aging research. They are not available for use as a general source of adult animals for unrelated areas of research. Animals from the NIA aged rodent colonies are available to investigators at academic and non-profit research institutions under the terms described on the Eligibility Criteria page. Orders must be submitted through the online rodent ordering system (ROS) (http://arc.niapublications.org/acb/stores/1/). Available strains: * Inbred Rats: Fischer 344 (F344), Brown Norway (BN) * Hybrid Rats: F344xBN F1 (F344BN); * Inbred Mice: BALB/cBy, CBA, C57BL/6, DBA/2 * Hybrid Mice: CB6F1 (BALB/cBy x C57BL/6), B6D2F1 (C57BL/6 x DBA/2) * Caloric Restricted Rats: F344 (males only), F344BN F1 (males only) * Caloric Restricted Mice: C57BL/6; B6D2F1 (males only)
Proper citation: NIA Aged Rodent Colonies (RRID:SCR_007317) Copy
National genetics data repository facilitating access to genotypic and phenotypic data for Alzheimer's disease (AD). Data include GWAS, whole genome (WGS) and whole exome (WES), expression, RNA Seq, and CHIP Seq analyses. Data for the Alzheimer’s Disease Sequencing Project (ADSP) are available through a partnership with dbGaP (ADSP at dbGaP). Repository for many types of data generated from NIA supported grants and/or NIA funded biological samples. Data are deposited at NIAGADS or NIA-approved sites. Genetic Data and associated Phenotypic Data are available to qualified investigators in scientific community for secondary analysis.
Proper citation: National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) (RRID:SCR_007314) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-tissue-bank-handbook/tissue-arrays
Offer high-throughput analysis of tissue histology and protein expression for the biogerontology research community. Each array is a 4 micron section that includes tissue cores from multiple tissues at multiple ages on one slide. The arrays are made from ethanol-fixed tissue and can be used for all techniques for which conventional tissue sections can be used. Ages are chosen to span the life from young adult to very old age. (available ages: 4, 12, 18, 24 and 28 months of age) Images of H&E stained punches are available for Liver, Cardiac Muscle, and Brain. The NIA aged rodent tissue arrays were developed with assistance from the National Cancer Institute (NCI) Tissue Array Research Program (TARP), led by Dr. Stephen Hewitt, Director. NCI TARP contains more information on tissue array construction, protocols for using arrays, and references. Preparation and Product Description Tissue arrays are prepared in parallel from different sets of animals so that experiments can be conducted in duplicate, with each array using unique animals with a unique product number. The product descriptions page describes each array, including: * Strain * Gender * Ages * Tissues * Animal Identification Numbers
Proper citation: Aged Rodent Tissue Arrays (RRID:SCR_007332) Copy
http://iadrp.nia.nih.gov/content/about-cadro
A classification system developed by the National Institute on Aging and the Alzheimer's Association that can be used to integrate and compare Alzheimer's disease (AD) research portfolios from public and private organizations supporting AD research in the US and abroad. The CADRO was constructed as a three-tier classification system organized around seven major categories: five in research and two resource-related: * Category A. Molecular Pathogenesis and Pathophysiology of Alzheimer's Disease * Category B. Diagnosis, Assessment and Disease Monitoring * Category C. Translational Research and Clinical Interventions * Category D. Epidemiology * Category E. Care, Support and Health Economics of Alzheimer's Diseases * Category F. Research Resources * Category G. Consortia and Public Private Partnerships * Category H. Alzheimer's Disease - Related Dementias Using information from project abstracts and research aims, the above categories were stratified into research topics and these were further divided into research themes. The three levels of classification are meant to enable a fine-grained portfolio analysis that can inform strategic planning and funding decisions. The CADRO was developed as a dynamic portfolio analysis tool that can be used to: (i) capture the changing landscape of AD research funded by different organizations, (ii) identify opportunities for coordination of support for AD research, and (iii) identify funding gaps as well as areas of overlap within and across organizations.
Proper citation: CADRO (RRID:SCR_004046) Copy
http://www.bu.edu/alzresearch/index.html
The goal of the Alzheimers Disease Center is to help reduce the human and economic costs associated with Alzheimers disease through the advancement of knowledge. The primary missions of the Center are to: conduct and facilitate cutting-edge Alzheimers disease research; enhance clinical care for Alzheimers disease patients and their families; and provide education regarding Alzheimers disease to both professional and lay audiences. The Center is made up of a multidisciplinary group of professionals dedicated to research, clinical care, and education.
Proper citation: Boston University Alzheimer's Disease Center (RRID:SCR_010692) Copy
http://www.brain.northwestern.edu/index.html
The Cognitive Neurology and Alzheimer's Disease Center (CNADC) is a multidisciplinary organization dedicated to conducting research to discover how the brain coordinates mental functions such as memory, language, attention, and emotion; transferring the benefits of this research to patients with brain diseases that impair cognitive function; and training researchers and clinicians who want to work in this field. The CNADC's mission is to investigate the neurological basis of cognitive function, to elucidate causes of dementia, and to ensure that the patients and their families are the beneficiaries of resultant discoveries. * Clinical Services: Neurobehavior and Memory Health Clinical Services * Annual Grant Opportunities: Annual Core Pilot Project Funding Opportunities * Research Areas & Faculty: Alzheimer's Disease / Primary Progressive Aphasia / Frontal Dementia, Brain Endowment (Brains are permanently stored, and requests for tissue for research purposes are submitted to Dr. Bigio for review by the Northwestern Alzheimer's Disease Center); Cognitive Brain Mapping Group, Volunteer For A Study * Fellowships: Neuropathology Fellowship, Behavioral Neurology & Neuropsychiatry Fellowship * Training Programs: Mechanisms of Aging and Dementia (M.A.D.) Training Program; Training Program in the Neuroscience of Human Cognition
Proper citation: Northwestern University Cognitive Neurology and Alzheimers Disease Center (RRID:SCR_012747) Copy
https://www.nia.nih.gov/alzheimers
Portal for Alzheimer's disease that compiles, archives and disseminates information about current treatments, diagnostic tools and ongoing research for health professions, people with AD, their families and the public. The Center provides informational services and referrals for AD symptoms, diagnosis and treatment for patients; clinical trial information and literature searches for researchers; training materials and guidelines for caregivers; and Spanish language resources.
Proper citation: Alzheimer's Disease Education and Referral Center (RRID:SCR_012787) Copy
http://umcd.humanconnectomeproject.org
Web-based repository and analysis site for connectivity matrices that have been derived from neuroimaging data including different imaging modalities, subject groups, and studies. Users can analyze connectivity matrices that have been shared publicly and upload their own matrices to share or analyze privately.
Proper citation: USC Multimodal Connectivity Database (RRID:SCR_012809) Copy
https://github.com/dmgroppe/Mass_Univariate_ERP_Toolbox
Software toolkit of Matlab functions for analyzing and visualizing large numbers of t-tests performed on event-related potential data. The toolbox supports within-subject and between-subject t-tests with false discovery rate controls and control of the family-wise error rate via permutation tests.
Proper citation: Mass Univariate ERP Toolbox (RRID:SCR_016108) Copy
NeuroImaging laboratory focused on detecting early brain changes associated with cognitive decline and dementia that manages the neuroimaging component of all studies at the Layton Aging and Alzheimer's Center including acquisition and archival services, as well as volumetric analysis of anonymized MRI scans. Assistance with resulting data is also available, including statistical analysis, and preparation of materials for presentation and publication. The Layton Center also manages a library of thousands of digitized MRI scans, including what is believed to be the largest collection of longitudinal MRI scans of cognitively intact elderly subjects. The OADC Neuroimaging Lab conducts MRI studies on both 3 and 7T MRI systems using advanced sequences, employing a multimodal approach to brain imaging research.
Proper citation: Layton Center NeuroImaging Laboratory (RRID:SCR_008823) Copy
http://www.ohsu.edu/xd/research/centers-institutes/neurology/alzheimers/
An aging and Alzheimer's disease research center that conducts studies of treatments, technologies for patient support, genetics, neuroimaging, and pathology. The Center's clinical research focuses on understanding differing rates of progression and cognitive decline as compared to optimal cognitive health in the elderly and are currently studying methods of gauging the progression of Alzheimer’s disease through research in genetics, neuroimaging, and cerebrospinal fluid biomarkers. Clinical trials performed at the Center include drugs targeted to ameliorate the symptoms of memory failure and slow the progression of disease.
Proper citation: OHSU Layton Aging and Alzheimer's Disease Center (RRID:SCR_008821) Copy
http://www.med.upenn.edu/cndr/index.shtml
A research institution which conducts clinical research to understand brain dysfunction and degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal disease (FTD), Amyotrophic Lateral Sclerosis (ALS or Lou Gehrig's disease), and other age-related neurodegenerative disorders. This organization also houses a general training program that has a focus on drug discovery. This program teaches trainees in etiology, pathogenesis, and diagnosis and treatment of Alzheimer's disease, Parkinson's disease, frontotemporal dementias, motor neuron disease and related disorders. This program also trains Ph.D and M.D/Ph.D students, as well scientists, physicians, and veterinarians who have already completed their advanced degree and are looking for a postdoctoral research fellowship. The program is designed to give a solid background in basic and translational neuroscience, and related disciplines.
Proper citation: University of Pennsylvania Center for Neurodegenerative Disease Research (RRID:SCR_008798) Copy
http://www.nitrc.org/projects/vmagnotta/
A Diffusion Tensor fiber tracking software suite that includes streamline tracking tools. The fiber tracking includes a guided tracking tool that integrates apriori information into a streamlines algorithm. This suite of programs is built using the NA-MIC toolkit and uses the Slicer3 execution model framework to define the command line arguments. These tools can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3. NOTE: All new development is being managed in a github repository. Please visit, https://github.com/BRAINSia/BRAINSTools
Proper citation: GTRACT (RRID:SCR_009651) Copy
https://cloudreg.neurodata.io/
Software automated, terascale, cloud based image analysis pipeline for preprocessing and cross modal, nonlinear registration between volumetric datasets with artifacts. Automatic terabyte scale cross modal brain volume registration.
Proper citation: CloudReg (RRID:SCR_022795) Copy
http://www.dian-info.org/default.htm
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. An international research partnership of leading scientists determined to understand a rare form of Alzheimers disease that is caused by a gene mutation and to establish a research database and tissue repository to support research on Alzheimers disease by other investigators around the world. One goal of DIAN is to study possible brain changes that occur before Alzheimers disease is expressed in people who carry an Alzheimers disease mutation. Other family members without a mutation will serve as a comparison group. People in families in which a mutation has been identified will be tracked in order to detect physical or mental changes that might distinguish people who inherited the mutation from those who did not. DIAN currently involves eleven outstanding research institutions in the United States, United Kingdom, and Australia. John C. Morris, M.D., Friedman Distinguished Professor of Neurology at Washington University School of Medicine in St. Louis, is the principal investigator of the project., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: DIAN - Dominantly Inherited Alzheimer Network (RRID:SCR_000812) Copy
Alzheimer's Disease Center that serves as the focal point for all Alzheimer's disease-related activities at the University of Kentucky and the Commonwealth of Kentucky providing an environment and core resources that catalyze innovative research, outreach, education, and clinical programs. Their ADC plans to build on its historic strengths and capitalize on emerging opportunities to provide an infrastructure that supports research designed to translate knowledge into therapeutic strategies for AD. They focus on two interrelated themes: Transitions and Translation. Their overall emphasis is to more effectively bridge the gap between basic research and clinical studies by facilitating translational efforts. They also carefully characterize transitions across the spectrum of cognitive impairment (normal/ preclinical AD/ MCI/ dementia), with focus on definition of early disease, and continue to support neuropathology as the bedrock of our center. The Alzheimer Disease Center's 2006-2011 grant award from the National Institute on Aging consists of five cores: * Administrative Core * Clinical Core * Biostatistics and Data Management Core * Neuropathology Core * Education & Information Transfer Core
Proper citation: University of Kentucky Alzheimer's Disease Center (RRID:SCR_008767) Copy
http://research.mssm.edu/cnic/
Center to advance research and training in mathematical, computational and modern imaging approaches to understanding the brain and its functions. Software tools and associated reconstruction data produced in the center are available. Researchers study the relationships between neural function and structure at levels ranging from the molecular and cellular, through network organization of the brain. This involves the development of new computational and analytic tools for imaging and visualization of 3-D neural morphology, from the gross topologic characteristics of the dendritic arbor to the fine structure of spines and their synapses. Numerical simulations of neural mechanisms based on these structural data are compared with in-vivo and in-vitro electrophysiological recordings. The group also develops new theoretical and analytic approaches to exploring the function of neural models of working memory. The goal of this analytic work is to combine biophysically realistic models and simulations with reduced mathematical models that capture essential dynamical behaviors while reproducing the functionally important features of experimental data. Research areas include: Imaging Studies, Volume Integration, Visualization Techniques, Medial Axis Extraction, Spine Detection and Classification, Applications of Rayburst, Analysis of Spatially Complex Structures, Computational Modeling, Mathematical and Analytic Studies
Proper citation: Computational Neurobiology and Imaging Center (RRID:SCR_013317) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.