Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://neuinfo.org/mynif/search.php?q=nlx_144644&t=indexable&list=cover&nif=nlx_144509-1
Dataset from an investigation of biochemical evidence of myocardial strain, oxidative stress, and cardiomyocyte injury in 55 acute KD subjects (30 with paired convalescent samples), 54 febrile control (FC), and 50 healthy control (HC) children by measuring concentrations of cardiovascular biomarkers. NT-proBNP and sST2 were elevated in acute KD subjects and correlated with impaired myocardial relaxation. These findings, combined with elevated levels of cTnI, suggest that both cardiomyocyte stress and cell death are associated with myocardial inflammation in acute KD.
Proper citation: Kawasaki Disease Dataset2 (RRID:SCR_008839) Copy
https://github.com/ding-lab/msisensor
A C++ software program for automatically detecting somatic and germline variants at microsatellite regions. It computes length distributions of microsatellites per site in paired tumor and normal sequence data, subsequently using these to statistically compare observed distributions in both samples.
Proper citation: MSIsensor (RRID:SCR_006418) Copy
http://www.capitalbiosciences.com/
Biological products including Cell Immortalization Products, Clinically Defined Human Tissue, cDNA ORF Clones, Premade Adenoviruses, Purified Proteins, Viral Expression Systems and others as well as services like Custom Recombinant Adenovirus Production, Custom Recombinant Lentivirus Production, Protein Detection and Quantification and Stable Cell Line Production for academic and governmental research institutes, pharmaceutical and biotechnology industry. Capital Biosciences offers most types of human tissues, normal and diseased, with extensive clinical history and follow up information. Standard specimen format: Snap-frozen(flash-frozen), Formalin fixed and paraffin embedded (FFPE) tissues, Blood and blood products, Bone marrow, Total RNA, Genomic DNA, Total Proteins, Primary cell cultures, Viable frozen tissue. Tumor tissue samples include: Bladder cancer, Glioblastoma, Medulloblastoma, Breast Carcinoma, Cervical Cancer, Colorectal Cancer, Endometrial Cancer, Esophageal Cancer, Head and Neck (H&N) Carcinoma, Hepatocellular Carcinoma (HCC), Hodgkin's lymphoma, Kidney, Renal Cell Carcinoma, Lung Cancer, Non-Small Cell (NCSLC), Lung Cancer, Small Cell (SCLC), Melanoma, Mesothelioma, non-Hodgkin's Lymphoma, Ovarian Adenocarcinoma, Pancreatic Cancer, Prostate Cancer, Stomach Cancer.
Proper citation: Capital Biosciences (RRID:SCR_004879) Copy
http://gmt.genome.wustl.edu/somatic-sniper/current/
Software program to identify single nucleotide positions that are different between tumor and normal (or, in theory, any two bam files). It takes a tumor bam and a normal bam and compares the two to determine the differences. It outputs a file in a format very similar to Samtools consensus format. It uses the genotype likelihood model of MAQ (as implemented in Samtools) and then calculates the probability that the tumor and normal genotypes are different. This probability is reported as a somatic score. The somatic score is the Phred-scaled probability (between 0 to 255) that the Tumor and Normal genotypes are not different where 0 means there is no probability that the genotypes are different and 255 means there is a probability of 1 ? 10(255/-10) that the genotypes are different between tumor and normal. This is consistent with how the SAM format reports such probabilities. It is currently available as source code via github or as a Debian APT package.
Proper citation: SomaticSniper (RRID:SCR_005108) Copy
Tool for calling indels in Tumor-Normal paired sample mode.
Proper citation: SomaticIndelDetector (RRID:SCR_005107) Copy
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/somaticcall-manual
Software program that finds single-base differences (substitutions) between sequence data from tumor and matched normal samples. It is designed to be highly stringent, so as to achieve a low false positive rate. It takes as input a BAM file for each sample, and produces as output a list of differences (somatic mutations). Note: This software package is no longer supported and information on this page is provided for archival purposes only.
Proper citation: SomaticCall (RRID:SCR_001196) Copy
http://bodymap.genes.nig.ac.jp/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A taxonomical and anatomical database of latest cross species animal EST data, clustered by UniGene and inter connected by Inparanoid. Users can search by Unigene, RefSeq, or Entrez Gene ID, or search for Gene Name or Tissue type. Data is also sortable and viewable based on qualities of normal, Neoplastic, or other. The last data import appears to be from 2008
Proper citation: BodyMap-Xs (RRID:SCR_001147) Copy
A curated knowledge base of the circuitry of the hippocampus of normal adult, or adolescent, rodents at the mesoscopic level of neuronal types. Knowledge concerning dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex is distilled from published evidence and is continuously updated as new information becomes available. Each reported neuronal property is documented with a pointer to, and excerpt from, relevant published evidence, such as citation quotes or illustrations. Please note: This is an alpha-testing site. The content is still being vetted for accuracy and has not yet undergone peer-review. As such, it may contain inaccuracies and should not (yet) be trusted as a scholarly resource. The content does not yet appear uniformly across all combinations of browsers and screen resolutions.
Proper citation: Hippocampome.org (RRID:SCR_009023) Copy
http://srv00.recas.ba.infn.it/ASPicDB/
A database to access reliable annotations of the alternative splicing pattern of human genes, obtained by ASPic algorithm (Castrignano et al. 2006), and to the functional annotation of predicted isoforms. Users may select and extract specific sets of data related to genes, transcripts and introns fulfilling a combination of user-defined criteria. Several tabular and graphical views of the results are presented, providing a comprehensive assessment of the functional implication of alternative splicing in the gene set under investigation. ASPicDB also includes information on tissue-specific splicing patterns of normal and cancer cells, based on available EST data and their library source annotation.
Proper citation: ASPicDB (RRID:SCR_002102) Copy
http://caprica.genetics.kcl.ac.uk/BRAINEAC/
Database for the UK Brain Expression Consortium (UKBEC) dataset that comprises of brains from individuals free of neurodegenerative disorders. The aim of Braineac is to release to the scientific community a valid instrument to investigate the genes and SNPs associated with neurological disorders.
Proper citation: Braineac (RRID:SCR_015888) Copy
Project exploring the spectrum of genomic changes involved in more than 20 types of human cancer that provides a platform for researchers to search, download, and analyze data sets generated. As a pilot project it confirmed that an atlas of changes could be created for specific cancer types. It also showed that a national network of research and technology teams working on distinct but related projects could pool the results of their efforts, create an economy of scale and develop an infrastructure for making the data publicly accessible. Its success committed resources to collect and characterize more than 20 additional tumor types. Components of the TCGA Research Network: * Biospecimen Core Resource (BCR); Tissue samples are carefully cataloged, processed, checked for quality and stored, complete with important medical information about the patient. * Genome Characterization Centers (GCCs); Several technologies will be used to analyze genomic changes involved in cancer. The genomic changes that are identified will be further studied by the Genome Sequencing Centers. * Genome Sequencing Centers (GSCs); High-throughput Genome Sequencing Centers will identify the changes in DNA sequences that are associated with specific types of cancer. * Proteome Characterization Centers (PCCs); The centers, a component of NCI's Clinical Proteomic Tumor Analysis Consortium, will ascertain and analyze the total proteomic content of a subset of TCGA samples. * Data Coordinating Center (DCC); The information that is generated by TCGA will be centrally managed at the DCC and entered into the TCGA Data Portal and Cancer Genomics Hub as it becomes available. Centralization of data facilitates data transfer between the network and the research community, and makes data analysis more efficient. The DCC manages the TCGA Data Portal. * Cancer Genomics Hub (CGHub); Lower level sequence data will be deposited into a secure repository. This database stores cancer genome sequences and alignments. * Genome Data Analysis Centers (GDACs) - Immense amounts of data from array and second-generation sequencing technologies must be integrated across thousands of samples. These centers will provide novel informatics tools to the entire research community to facilitate broader use of TCGA data. TCGA is actively developing a network of collaborators who are able to provide samples that are collected retrospectively (tissues that had already been collected and stored) or prospectively (tissues that will be collected in the future).
Proper citation: The Cancer Genome Atlas (RRID:SCR_003193) Copy
https://www.davincieuropeanbiobank.org/
BioBank that collects, stores, processes and distributes biospecimens and the associated data. The biospecimens are human and non-human genetic materials, proteins, cells, tissues and biofluids. The data are the biological information associated to the samples and, in the case of human samples, the clinical information pertaining to the donor. The da Vinci European BioBank (daVEB) is a multicenter biobank with a centralized IT infrastructure and a main repository located at the Polo Scientifico (Scientific Campus of the University of Florence) in Sesto Fiorentino (Florence, Italy). Hosted by the Magnetic Resonance Center (CERM), an expert center on protein structure and metabolomics, daVEB's aim is to host as rich as possible biological human sample collections, stored accordingly to EU guidelines, in order to offer a powerful tool in the study of complex diseases. At the end of July 2011, the da Vinci European BioBank of the Pharmacogenomics FiorGen Onlus Foundation has been audited and got the quality certification according to UNI EN ISO 9001:2008 for Collection, storage and distribution of biological samples and the associated data for scientific research. Besides the samples stored at da Vinci European BioBank in Sesto Fiorentino (Florence), the daVEB is also the administrative biobank for research sample collections that are stored in the delocalized repositories. All the sample collections must be registered in the biobank: * sample collections taken within the regular health care * samples taken from healthy individuals or other persons out of the regular health care * samples that have been taken in hospitals within research protocols on specific pathologies all transferred to daVEB endowed with a transfer agreement signed by the donor. The Research Units actually afferent to daVEB are delocalized in the Florence, Prato, Pisa and Siena provinces. Delocalized repositories are under construction in Tuscany.
Proper citation: da Vinci European Biobank (RRID:SCR_004908) Copy
Collection of human embryonic and fetal material (Tissue and RNA) ranging from 3 to 20 weeks of development available to the international scientific community. Material can either be sent to registered users or our In House Gene Expression Service (IHGES) can carry out projects on user''''s behalf, providing high quality images and interpretation of gene expression patterns. Gene expression data emerging from HDBR material is added to our gene expression database which is accessible via our HUDSEN (Human Developmental Studies Network) website. A significant proportion of the material has been cytogenetically karyotyped, and normal karyotyped material is provided for research.
Proper citation: Human Developmental Biology Resource (RRID:SCR_006326) Copy
Two University College London (UCL) biobanks, one based at the Royal Free Hospital (RFH) Campus and the other based at Bloomsbury supporting Pathology and the Cancer Institute, will act as physical repositories for collections of biological samples and data from patients consented at UCLH, Partners Hospitals and external sources. This will incorporate collections of existing stored samples and new collections. UCL-RFH BioBank, the physical repository at the Royal Free, presents a unique opportunity to advance medical research through making access to research tissue easier, faster and much more efficient. The BioBank is both a physical repository, with capacity for up to 1 million cryogenically stored samples and a virtual repository for all tissue, cell, plasma, serum, DNA and RNA samples stored throughout UCLP. In particular, samples considered "relevant material", such as tissues and cells, that are licensed by the Human Tissue Authority, can be stored long term. Existing holdings of tissues and cells where appropriate can be transferred to the Physical BioBank at the Royal Free. UCL - Royal Free BioBank provides a flexible approach to banking, allowing the Depositor to pick and choose services that are tailored to fit their requirements. Collaborations arising from publicizing of the existence of the holdings are entirely at the discretion of the depositor, as the facility ensures that access to the deposits remains at the decision of the Depositor/User. UCL Biobank for studying Health and Disease (based at Pathology-Rockefeller building and the UCL-Cancer Institute will support projects principally involved in the study of human disease. The aim is to support primarily, research in the Pathology Department, UCLH and the UCL-Cancer Institute but it will also support other UCLH partners. The biobank will store normal and pathological specimens, surplus to diagnostic requirements, from relevant tissues and bodily fluids. Stored tissues will include; snap-frozen or cryopreserved tissue, formalin-fixed tissue, paraffin-embedded tissues, and slides prepared for histological examination. Tissues will include resection specimens obtained surgically or by needle core biopsy. Bodily fluids will include; whole blood, serum, plasma, urine, cerebrospinal fluid, milk, saliva and buccal smears and cytological specimens such as sputum and cervical smears. Fine needle aspirates obtained from tissues and bodily cavities (e.g. pleura and peritoneum) will also be collected. Where appropriate the biobank will also store separated cells, protein, DNA and RNA isolated from collected tissues and bodily fluids described above. Some of the tissue and aspirated samples will be stored in the diagnostic archive.
Proper citation: UCL Biobank (RRID:SCR_000517) Copy
Open access resource for human proteins. Used to search for specific genes or proteins or explore different resources, each focusing on particular aspect of the genome-wide analysis of the human proteins: Tissue, Brain, Single Cell, Subcellular, Cancer, Blood, Cell line, Structure and Interaction. Swedish-based program to map all human proteins in cells, tissues, and organs using integration of various omics technologies, including antibody-based imaging, mass spectrometry-based proteomics, transcriptomics, and systems biology. All the data in the knowledge resource is open access to allow scientists both in academia and industry to freely access the data for exploration of the human proteome.
Proper citation: The Human Protein Atlas (RRID:SCR_006710) Copy
http://ki.se/en/imm/sheep-the-stockholm-heart-epidemiology-program
DNA from a population-based case-control study designed to investigate causes of myocardial infarction. The study population comprised all Swedish citizens living in the county of Stockholm who were 45 to 70 years of age and free of previously clinically diagnosed MI. Sample types: * DNA Number of sample donors: 2831 (sample collection completed)
Proper citation: SHEEP - Stockholm Heart Epidemiology Program (RRID:SCR_008905) Copy
http://www.framinghamheartstudy.org/
A longitudinal, epidemiologic study to identify the common risk factors or characteristics that contribute to cardiovascular disease by following its development over a long period of time in a large group of participants who had not yet developed overt symptoms or suffered a heart attack or stroke. Since that time the FHS has studied three generations of participants resulting in biological specimens and data from nearly 15,000 participants. Since 1994, two groups from minority populations, including related individuals have been added to the FHS. FHS welcomes proposals from outside investigators for data and biospecimens. The researchers recruited 5,209 men and women between the ages of 30 and 62 from the town of Framingham, Massachusetts, and began the first round of extensive physical examinations and lifestyle interviews that they would later analyze for common patterns related to CVD development. Since 1948, the subjects have continued to return to the study every two years for a detailed medical history, physical examination, and laboratory tests, and in 1971, the Study enrolled a second generation - 5,124 of the original participants'''' adult children and their spouses - to participate in similar examinations. In 1994, the need to establish a new study reflecting a more diverse community of Framingham was recognized, and the first Omni cohort of the Framingham Heart Study was enrolled. In April 2002 the Study entered a new phase, the enrollment of a third generation of participants, the grandchildren of the Original Cohort. In 2003, a second group of Omni participants was enrolled. Over the years, careful monitoring of the Framingham Study population has led to the identification of major CVD risk factors, as well as valuable information on the effects of these factors such as blood pressure, blood triglyceride and cholesterol levels, age, gender, and psychosocial issues. Risk factors for other physiological conditions such as dementia have been and continue to be investigated. In addition, the relationships between physical traits and genetic patterns are being studied. FHS clinical and research data is stored in the dbGaP and NHLBI Repository repositories and may be accessed by application. Please check the following repositories before applying for data through FHS. Investigators seeking data that is not available through dbGaP or BioLINCC or seeking biological specimens may submit a proposal through the FHS web-based research application. The FHS data repository may be accessed through this FHS website, under the For Researchers link, then Description of Data, in order to determine if and how the desired data is stored. Proposals may involve the use of existing data, the collection of new data, either directly from participants or from previously collected samples, images, or other materials (e.g., medical records). The FHS Repository also has biological specimens available for genetic and non-genetic research proposals. Specimens include urine, blood and blood products, as well as DNA.
Proper citation: Framingham Heart Study (RRID:SCR_008963) Copy
http://www.chernobyltissuebank.com/
The CTB (Chernobyl Tissue Bank) is an international cooperation that collects, stores and disseminates biological samples from tumors and normal tissues from patients for whom the aetiology of their disease is known - exposure to radioiodine in childhood following the accident at the Chernobyl power plant. The main objective of this project is to provide a research resource for both ongoing and future studies of the health consequences of the Chernobyl accident. It seeks to maximize the amount of information obtained from small pieces of tumor by providing multiple aliquots of RNA and DNA extracted from well documented pathological specimens to a number of researchers world-wide and to conserve this valuable material for future generations of scientists. It exists to promote collaborative, rather than competitive, research on a limited biological resource. Tissue is collected to an approved standard operating procedure (SOP) and is snap frozen; the presence or absence of tumor is verified by frozen section. A representative paraffin block is also obtained for each case. Where appropriate, we also collect fresh and paraffin-embedded tissue from loco-regional metastases. Currently we do not issue tissue but provide extracted nucleic acid, paraffin sections and sections from tissue microarrays from this material. The project is coordinated from Imperial College, London and works with Institutes in the Russian Federation (the Medical Radiological Research Centre in Obninsk) and Ukraine (the Institute of Endocrinology and Metabolism in Kiev) to support local scientists and clinicians to manage and run a tissue bank for those patients who have developed thyroid tumors following exposure to radiation from the Chernobyl accident. Belarus was also initially included in the project, but is currently suspended for political reasons.
Proper citation: Chernobyl Tissue Bank (RRID:SCR_010662) Copy
Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.
Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy
http://www.som.soton.ac.uk/research/sites/cruk/translation/tumour.asp
Collects and distributes human tissue for ethically approved studies to aid the study of cancer biology and other associated research. All tissue is collected with patient consent and tissue is distributed only to ethically approved studies. The purpose of the Tissue Bank is to source, organize, collect, prepare, store and distribute a diverse collection of human tissues and biological products. This valuable core resource is available to all local academics and researchers. The on-site bank allows for rapid access to a plethora of biological materials supported by an informatics system of databases acting as an inventory management system. In addition, the Tissue Bank provides a licensed facility to store surplus tissue when studies close. Tissues currently available include normal and malignant snap frozen blocks, freshly prepared spleen and lymph nodes, fresh biopsy tissues, blood products and biological fluids. Collections can be organized by bank staff or ran in parallel with current research activities and include a wide variety of cancer classifications. We currently hold over 38,000 vials. Tissue Availability: Lymphoma - solid tissue and cells - 843; Breast - solid tissue and cells - 540; Colon - solid tissue and cells - 238; Lung - solid tissue and cells - 43; Upper Gi - BIOPSY tissue - 114; Pleural fluid and cells - 14
Proper citation: Southampton Tumour Bank (RRID:SCR_000673) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.