Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.
Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy
A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.
Proper citation: 3D Slicer (RRID:SCR_005619) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A public resource for sharing general proteomics information including data (Tranche repository), tools, and news. Joining or creating a group/project provides tools and standards for collaboration, project management, data annotation, permissions, permanent storage, and publication.
Proper citation: Proteome Commons (RRID:SCR_006234) Copy
http://jjwanglab.org:8080/gwasdb/
Combines collections of genetic variants (GVs) from GWAS and their comprehensive functional annotations, as well as disease classifications. Used to maximize utilility of GWAS data to gain biological insights through integrative, multi-dimensional functional annotation portal. In addition to all GVs annotated in NHGRI GWAS Catalog, we manually curate GVs that are marginally significant (P value < 10-3) by looking into supplementary materials of each original publication and provide extensive functional annotations for these GVs. GVs are manually classified by diseases according to Disease Ontology Lite and HPO (Human Phenotype Ontology) for easy access. Database can also conduct gene based pathway enrichment and PPI network association analysis for those diseases with sufficient variants. SOAP services are available. You may Download GWASdb SNP. (This file contains all of the significant SNP in GWASdb. In the pvalue column, 0 means this P-value is not reported in the study but it is significant SNP. In the source column, GWAS:A represents the original data in GWAS catalog, while GWAS:B is our curation data which P-value < 10-3)
Proper citation: GWASdb (RRID:SCR_006015) Copy
Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.
Proper citation: PeptideAtlas (RRID:SCR_006783) Copy
https://github.com/dpeerlab/Palantir/
Algorithm to align cells along differentiation trajectories. Models trajectories of differentiating cells by treating cell fate as probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Generates high-resolution pseudo-time ordering of cells and, for each cell state, assigns probability of differentiating into each terminal state.
Proper citation: Palantir (RRID:SCR_027194) Copy
Trans-NIH program encouraging and facilitating the study of the underlying mechanisms controlling blood vessel growth and development. Other aims include: to identify specific targets and to develop therapeutics against pathologic angiogenesis in order to reduce the morbidity due to abnormal blood vessel proliferation in a variety of disease states; to better understand the process of angiogenesis and vascularization to improve states of decreased vascularization; to encourage and facilitate the study of the processes of lymphangiogenesis; and to achieve these goals through a multidisciplinary approach, bringing together investigators with varied backgrounds and varied interests.
Proper citation: Trans-Institute Angiogenesis Research Program (RRID:SCR_000384) Copy
The PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) is a multidisciplinary cooperative research organization devoted to the study of correlative tumor biology and new therapies for primary CNS tumors of childhood. PBTC's mission is to contribute rapidly and effectively to the understanding and cure of these tumors through the conduct of multi-center, multidisciplinary, innovative studies with designs and analyses based on uniformly high quality statistical science. While the primary mission of the PBTC is to identify through laboratory and clinical science superior treatment strategies for children with brain cancers, the PBTC investigators recognize their profound responsibility to meet the special needs of the children and families as they face this enormous challenge. Members are committed to working within their institutions and communities to improve support services and follow up care for these patients and their families. The PBTC's primary objective is to rapidly conduct novel phase I and II clinical evaluations of new therapeutic drugs, new biological therapies, treatment delivery technologies and radiation treatment strategies in children from infancy to 21 years of age with primary central nervous system (CNS) tumors. A second objective is to characterize reliable markers and predictors (direct or surrogate) of brain tumors' responses to new therapies. The Consortium conducts research on brain tumor specimens in the laboratory to further understand the biology of pediatric brain tumors. A third objective is to develop and coordinate innovative neuro-imaging techniques. Through the PBTC's Neuro-Imaging Center, formed in May 2000, research to evaluate new treatment response criteria and neuro-imaging methods to understand regional brain effects is in progress. These imaging techniques can also advance understanding of significant neuro-toxicity in a developing child's central nervous system. The Neuro-Imaging Center is supported in part by private sources - grants from foundations and non-profit organizations - in addition to the NCI. As an NCI funded Consortium, the Pediatric Brain Tumor Consortium (PBTC) is required to make research data available to other investigators for use in research projects. An investigator who wishes to use individual patient data from one or more of the Consortium's completed and published studies must submit in writing a description of the research project, the PBTC studies from which data are requested, the specific data requested, and a list of investigators involved with the project and their affiliated research institutions. A copy of the requesting investigator's CV must also be provided. Participating Institutions: Children's Hospital of Philadelphia, Children's National Medical Center (Washington, DC), Children's Memorial Hospital (Chicago), Duke University, National Cancer Institute, St. Jude Children's Research Hospital, Texas Children's Cancer Center, University of California at San Francisco, and University of Pittsburgh.
Proper citation: Pediatric Brain Tumor Consortium (RRID:SCR_000658) Copy
Center for patient care, education and research on cancer. The institute focuses its research on prevention methods, early detection, treatment and finding cures.
Proper citation: Karmanos Cancer Institute (RRID:SCR_000508) Copy
Web application that helps design, evaluate and clone guide sequences for the CRISPR/Cas9 system. This sgRNA design tool assists with guide selection in a variety of genomes and pre-calculated results for all human coding exons as a UCSC Genome Browser track.
Proper citation: CRISPOR (RRID:SCR_015935) Copy
https://www.robotreviewer.net/about
Open source web based system that uses machine learning and NLP to semi automate biomedical evidence synthesis, to aid practice of Evidence Based Medicine. Processes full text journal articles describing randomized controlled trials. Designed to automatically extract key data items from reports of clinical trials.
Proper citation: RobotReviewer (RRID:SCR_021064) Copy
https://appyters.maayanlab.cloud
Collection of web-based software applications that enable users to execute bioinformatics workflows without coding. Turns Jupyter notebooks into fully functional standalone web-based bioinformatics applications. Each Appyter application introduces data entry form for uploading or fetching data, as well as for selecting options for various settings. Once user presses Submit, Appyter is executed in cloud and user is presented with Jupyter Notebook report that contain results. Report includes markdown text, interactive and static figures, and source code. Appyter users can share the link to the output report, as well as download the fully executable notebook for execution on other platforms.
Proper citation: Appyters (RRID:SCR_021245) Copy
https://github.com/abyzovlab/CNVpytor
Software Python package and command line tool for CNV/CNA analysis from depth of coverage by mapped reads. Software tool for CNV/CNA detection and analysis from read depth and allele imbalance in whole genome sequencing.
Proper citation: CNVpytor (RRID:SCR_021627) Copy
https://github.com/kukionfr/VAMPIRE_open
Software tool for analysis of cell and nuclear morphology from fluorescence or bright field images. Enables profiling and classification of cells into shape modes based on equidistant points along cell and nuclear contours. Robust method to quantify cell morphological heterogeneity.
Proper citation: VAMPIRE (RRID:SCR_021721) Copy
https://cumulus.readthedocs.io/en/stable
Software tool as cloud based single cell genomics and spatial transcriptomics data analysis framework that is scalable to massive amounts of data and able to process variety of data types. Consists of cloud analysis workflow, Python analysis package and visualization application. Supports analysis of single-cell RNA-seq, CITE-seq, Perturb-seq, single-cell ATAC-seq, single-cell immune repertoire and spatial transcriptomics data.
Proper citation: Cumulus (RRID:SCR_021644) Copy
https://github.com/vlink/marge
Software package that integrates genome wide genetic variation with epigenetic data to identify collaborative transcription factor pairs. Optimized to work with chromatin accessibility assays such as ATAC-seq or DNase I hypersensitivity, as well as transcription factor binding data collected by ChIP-seq. Used to identify combinations of cell type specific transcription factors while simultaneously interpreting functional effects of non-coding genetic variation.
Proper citation: Motif Mutation Analysis for Regulatory Genomic Elements (RRID:SCR_021902) Copy
http://seer.cancer.gov/resources/
Portal provides SEER research data and software SEER*Stat and SEER*Prep. SEER incidence and population data associated by age, sex, race, year of diagnosis, and geographic areas can be used to examine stage at diagnosis by race/ethnicity, calculate survival by stage at diagnosis, age at diagnosis, and tumor grade or size, determine trends and incidence rates for various cancer sites over time. SEER releases new research data every Spring based on the previous November’s submission of data.
Proper citation: SEER Datasets and Software (RRID:SCR_003293) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)
Proper citation: Pathbase (RRID:SCR_006141) Copy
https://github.com/jbelyeu/SV-plaudit
Software for rapidly curating structural variant (SVs) predictions. SV-plaudit provides a pipeline for creating image views of genomic intervals, automatically storing them in the cloud, deploying a website to view/score them, and retrieving scores for analysis.
Proper citation: SV-plaudit (RRID:SCR_016285) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.