Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Knowledgebase that uses ontologies to integrate phenotypic data from genetic studies of zebrafish with evolutionary variable phenotypes from the systematic literature of ostariophysan fishes. Users can explore the data by searching for anatomical terms, taxa, or gene names. The expert system enables the broad scale analysis of phenotypic variation across taxa and the co-analysis of these evolutionarily variable features with the phenotypic mutants of model organisms. The Knowledgebase currently contains 565,158 phenotype statements about 2,527 taxa, sourced from 57 publications, as well as 38,189 phenotype statements about 4,727 genes, retrieved from ZFIN. 2013-01-26.
Proper citation: Phenoscape Knowledgebase (RRID:SCR_002821) Copy
http://mirnamap.mbc.nctu.edu.tw
A database of experimentally verified microRNAs and miRNA target genes in human, mouse, rat, and other metazoan genomes. In addition to known miRNA targets, three computational tools previously developed, such as miRanda, RNAhybrid and TargetScan, were applied for identifying miRNA targets in 3'-UTR of genes. In order to reduce the false positive prediction of miRNA targets, several criteria are supported for filtering the putative miRNA targets. Furthermore, miRNA expression profiles can provide valuable clues for investigating the properties of miRNAs, such tissue specificity and differential expression in cancer/normal cell. Therefore, we performed the Q-PCR experiments for monitoring the expression profiles of 224 human miRNAs in eighteen major normal tissues in human. The cross-reference between the miRNA expression profiles and the expression profiles of its target genes can provide effective viewpoint to understand the regulatory functions of the miRNA.
Proper citation: miRNAMap (RRID:SCR_003156) Copy
http://bpg.utoledo.edu/~afedorov/lab/eid.html
Data sets of protein-coding intron-containing genes that contain gene information from humans, mice, rats, and other eukaryotes, as well as genes from species whose genomes have not been completely sequenced. This is a comprehensive and convenient dataset of sequences for computational biologists who study exon-intron gene structures and pre-mRNA splicing. The database is derived from GenBank release 112, and it contains protein-coding genes that harbor introns, along with extensive descriptions of each gene and its DNA and protein sequences, as well as splice motif information. They have created subdatabases of genes whose intron positions have been experimentally determined. The collection also contains data on untranslated regions of gene sequences and intron-less genes. For species with entirely sequenced genomes, species-specific databases have been generated. A novel Mammalian Orthologous Intron Database (MOID) has been introduced which includes the full set of introns that come from orthologous genes that have the same positions relative to the reading frames.
Proper citation: EID: Exon-Intron Database (RRID:SCR_002469) Copy
http://zfrhmaps.tch.harvard.edu/cemh/CoreB.htm
Zebrafish core facility which generates and maintains transgenic and mutant fish lines for hematology research. It also provides expertise and training in model production, study design, and fish production for research.
Proper citation: Boston Children's Hospital Center of Excellence in Molecular Hematology Zebrafish Core (RRID:SCR_015355) Copy
http://zfrhmaps.tch.harvard.edu/cemh/CoreC.htm
Core facility for basic and translational stem cell research. The core's areas of expertise include human pluripotent stem cell biology, cGMP cell manufacturing, reprogramming, genome editing, genotyping, laboratory automation, chemical screening, and imaging/image analysis.
Proper citation: Boston Children's Hospital Center of Excellence in Molecular Hematology Stem Cell Engineering and Analysis Core (RRID:SCR_015352) Copy
http://www.kidneycenter.pitt.edu/cores/model_organisms.html
Core that uses the yeast S. cerevisiae and the zebrafish D. rerio to dissect fundamental aspects of kidney development and protein structure and function.
Proper citation: Pittsburgh Center for Kidney Research Model Organisms (RRID:SCR_015288) Copy
http://www.norc.uab.edu/corefacilities/animalmodels
Core that provides specialized expertise in the use of animal models and instrumentation to facilitate animal research related to nutrition and obesity.
Proper citation: University of Alabama at Birmingham Nutrition and Obesity Research Center Animal Models Core (RRID:SCR_015466) Copy
http://corefacilities.case.edu/animal.php
A set of core facilities of Case Western Reserve University School of Medicine which allows users to create and analyze in vivo animal models. The various facilities provide animal care, transgenic models, imaging, irradiation, and phenotyping for research concerning such topics as cancer, metabolic processes, and behavior. In vivo animals provided include mice, zebrafish, and rodents.
Proper citation: CWRU In Vivo Animal Facilities (RRID:SCR_014209) Copy
A commercial organization with expertise and multiple departments that focus on both fish physiology and molecular cell biology. ZF-pharma has developed patented technology for the automated in vivo high-throughput screening of pharmaceutical drug candidates against diseases. They seek industrial partners that are interested in obtaining a license for this technology or, alternatively, would prefer to outsource screening of TB drugs to ZF-pharma. NewCatch BV has developed a tool for use in sustainable aquaculture. The tool will first be used for reproduction of the highly valued fish species eel, pikeperch and sole. They seek industrial / aquaculture partners interested in obtaining a license for ZF-implants in other fish species. NewCatch BV carries out fish reproductive research, for instance European eel (Anguilla anguilla), exploring maturation and reproduction. ZF-Genomics offers multiple sequencing services, including mRNAseq and microRNA analysis and de novo and reference genome assemblies. In addition they also offer the bioinformatics services that are needed to make sense of the sequence data. In addition, they perform Next generation sequencing tasks for (inter)national research project partners and for external customers.
Proper citation: ZF-screens (RRID:SCR_003910) Copy
Software package that provides the ability to do a number of standard semantic similarity methods and includes novel methods for combining these with dynamic selection of anonymous grouping classes. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: OwlSim (RRID:SCR_006819) Copy
https://www.facebase.org/fishface/home
ishFace is an atlas of zebrafish craniofacial development. How do the elements of the craniofacial skeleton arise, grow, and reshape? Answers to this question are coming from both molecular-genetic and cell-biological approaches, which rely, first of all, on precise description of the developmental events and processes that comprise skeletogenesis. Zebrafish, with a sophisticated knowledge of its genetics and genomics, with favorable attributes for phenotypic analyses of development, and with patterns of development conserved among all vertebrates, provides a powerful animal model for learning about craniofacial development. In particular, with current transgenic approaches one can examine craniofacial skeletal elements in exquisite cellular detail during an extended period of development within living, intact embryos and larvae an investigative method unsurpassed in accuracy and sensitivity. We constructed this developmental atlas of the craniofacial skeleton, FishFace, to serve as a guide for such study. We hope that the FishFace Atlas will be particularly useful in comparative and mutational analyses where there is interest in understanding the cellular basis of early skeletogenesis. The heart of the FishFace Atlas uses high magnification (generally a 40x objective) confocal image stacks showing transgenically-labelled chondrocytes or osteoblasts, along with mineralized bone matrix, which is visualized by vital staining with Alizarin red. We present these stacks in sequences that follow particular individual cartilages and bones of the first two pharyngeal arches as they develop during embryonic and larval stages. To do so, we build on the foundation set out in the gold standard reference for describing comprehensively skeletal elements in the zebrafish craniofacial complex, Cubbage and Mabee (1996), which used fixed preparations stained for cartilage and bone through adult stages. The FishFace Atlas element development section adds considerable detail to arch one and two early development, particularly at the cellular level, but also in description of element growth and shaping. Other sections of the FishFace Atlas, at lower magnification, provide anatomical context for the element development section, including an interactive tool made by optical projection tomography (OPT) for learning the anatomy of the entire larval skull. Hence, the FishFace Atlas provides the community with an interactive resource with which the user can understand not only the cellular details, but also complex 3D anatomical relationships, of developing elements in the craniofacial skeleton of the zebrafish.
Proper citation: FishFace - An atlas of zebrafish craniofacial development (RRID:SCR_008894) Copy
Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.
Proper citation: Gene Weaver (RRID:SCR_003009) Copy
http://burgundy.cmmt.ubc.ca/cgi-bin/RAVEN/a?rm=home
Tool to search for putative regulatory genetic variation in your favorite gene. Single nucleotide polymorphisms (SNPs) (from dbSNP and user defined) are analyzed for overlap with potential transcription factor binding sites (TFBS) and phylogenetic footprinting using UCSC phastCons scores from multiple alignments of 8 vertebrate genomes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: RAVEN (RRID:SCR_001937) Copy
http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature, is a collection of knowledge on experimentally verified intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). IDEAL contains manually curated annotations on IDPs in locations, structures, and functional sites such as protein binding regions and posttranslational modification sites together with references and structural domain assignments. Protean segment One of the unique phenomena seen in IDPs is so-called the coupled folding and binding, where a short flexible segment can bind to its binding partner with forming a specific structure to act as a molecular recognition element. IDEAL explicitly annotates these regions as protean segment (ProS) when unstructured and structured information are both available in the region. Access to the data All the entries are tabulated in the list and individual entries can be retrieved by using the search tool at the upper-right corner in this page. IDEAL also provides the BLAST search, which can find homologs in IDEAL. All the information in IDEAL can be downloaded in the XML file.
Proper citation: IDEAL - Intrinsically Disordered proteins with Extensive Annotations and Literature (RRID:SCR_006027) Copy
http://www.kaluefflab.com/znpindex.html
Database of neurobehavioral and physiological data of adult zebrafish models, complementing the available repositories for zebrafish genetic information, by providing a dynamic, open-access data repository of comprehensive, curated collection of results from zebrafish neurobehavioral experiments. As of May 2012, it contains over 4,500 experimental results, from over 75 unique physiological and behavioral tests and 330 different drug treatments. ZNP incorporates validated and curated data from work published in this field, to improve the accessibility of current knowledge to researchers interested in using adult zebrafish models. Overall, this program will allow investigators to rapidly review data, to direct their research using these models. Data and protocol submissions are now being accepted.
Proper citation: Zebrafish Neurophenome Project Database (RRID:SCR_004482) Copy
Center that supplies access to wild-type, mutant, and transgenic zebrafish lines, EST's/cDNAs, antibodies and fish health services. ZIRC Health Services include diagnostic pathology testing for zebrafish and other small laboratory fish species.
Proper citation: Zebrafish International Resource Center (RRID:SCR_005065) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
A database of mRNA polyadenylation sites. PolyA_DB version 1 contains human and mouse poly(A) sites that are mapped by cDNA/EST sequences. PolyA_DB version 2 contains poly(A) sites in human, mouse, rat, chicken and zebrafish that are mapped by cDNA/EST and Trace sequences. Sequence alignments between orthologous sites are available. PolyA_SVM predicts poly(A) sites using 15 cis elements identified for human poly(A) sites.
Proper citation: PolyA DB (RRID:SCR_007867) Copy
http://www.sanger.ac.uk/cgi-bin/teams/team30/arnie
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Database that integrates the extracellular protein interaction network generated in our lab using AVEXIS technology with spatiotemporal expression patterns for all genes in the network. The tool allows users to browse the network by clicking on individual proteins, or by specifying the spatiotemporal parameters. Clicking on connector lines will allow users to compare stage-matched expression patterns for genes encoding interacting proteins. Additionally, users can rapidly search for their genes in the network using the BLAST server provided.
Proper citation: ARNIE (RRID:SCR_000514) Copy
http://fairbrother.biomed.brown.edu/spliceman/index.cgi
An online tool that takes a set of DNA sequences with point mutations and returns a ranked list to predict the effects of point mutations on pre-mRNA splicing. The current implementation includes 11 genomes: human, chimp, rhesus, mouse, rat, dog, cat, chicken, guinea pig, frog and zebrafish.
Proper citation: Spliceman (RRID:SCR_005354) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.