Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_008007

    This resource has 1000+ mentions.

http://www.chibi.ubc.ca/Gemma

Resource for reuse, sharing and meta-analysis of expression profiling data. Database and set of tools for meta analysis, reuse and sharing of genomics data. Targeted at analysis of gene expression profiles. Users can search, access and visualize coexpression and differential expression results.

Proper citation: Gemma (RRID:SCR_008007) Copy   


  • RRID:SCR_023723

    This resource has 1+ mentions.

https://open.oncobox.com/

Structured curated collection of protein based and of metabolic human molecular pathways. Human molecular pathways database with tools for activity calculating and visualization.All pathways are functionally classified according to GO terms enrichment patterns. All pathway participants, their interactions and reactions are uniformly processed and annotated, and are ready for numeric analysis of experimental expression data.For every comparison graph is generated summarizing top up and down regulated pathways.

Proper citation: OncoboxPD (RRID:SCR_023723) Copy   


  • RRID:SCR_002477

    This resource has 10+ mentions.

http://www.evidenceontology.org

A controlled vocabulary that describes types of scientific evidence within the realm of biological research that can arise from laboratory experiments, computational methods, manual literature curation, and other means. Researchers can use these types of evidence to support assertions about research subjects that result from scientific research, such as scientific conclusions, gene annotations, or other statements of fact. ECO comprises two high-level classes, evidence and assertion method, where evidence is defined as a type of information that is used to support an assertion, and assertion method is defined as a means by which a statement is made about an entity. Together evidence and assertion method can be combined to describe both the support for an assertion and whether that assertion was made by a human being or a computer. However, ECO can not be used to make the assertion itself; for that, one would use another ontology, free text description, or other means. ECO was originally created around the year 2000 to support gene product annotation by the Gene Ontology. Today ECO is used by many groups concerned with provenance in scientific research. ECO is used in AmiGO 2

Proper citation: ECO (RRID:SCR_002477) Copy   


  • RRID:SCR_013646

    This resource has 1+ mentions.

http://www.phenogo.org

PhenoGO is a computed database designed for high throughput mining that provides phenotypic and experimental context - such as the cell type, disease, tissue, and organ - to existing annotations between gene products and Gene Ontology (GO) terms, as specified in the Gene Ontology Annotations (GOA) for multiple model organisms. Phenotypic and Experimental (P&E) contexts to identifiers are computationally mapped to general biological ontologies, including: the Cell Ontology (CO), phenotypes from the Unified Medical Language System (UMLS), species from Taxonomy of the National Center for Biotechnology Information (NCBI) taxonomy, and specialized ontologies such as Mammalian Phenotype Ontology (MP) and Mouse Anatomy (MA).

Proper citation: PhenoGO (RRID:SCR_013646) Copy   


  • RRID:SCR_014392

    This resource has 10+ mentions.

http://supfam.org/SUPERFAMILY/dcGO/

A database of domain-centric ontologies on functions, phenotypes, diseases and more. As a biomedical ontology resource, dcGO integrates functional, phenotypic, disease, and drug information. As a protein domain resource, it includes annotations to both the individual domains and supra-domains. Domain classifications and ontologies are organized in hierarchies, and dcGO includes the facility to browse the hierarchies: SCOP Hierarchy for browsing domains, GO Hierarchy for browsing GO terms, and BO Hierarchy for browsing other terms (mostly phenotypes). Users can mine and browse through resources.

Proper citation: dcGO (RRID:SCR_014392) Copy   


https://factory.euromov.eu/sml/index.php

Open source Java library dedicated to semantic measures computation and analysis. Tools based on the SML are also provided through the SML-Toolkit, a command line software giving access to some of the functionalities of the library. The SML and the toolkit can be used to compute semantic similarity and semantic relatedness between semantic elements (e.g. concepts, terms) or entities semantically characterized (e.g. entities defined in a semantic graph, documents annotated by concepts defined in an ontology).

Proper citation: Semantic Measures Library (RRID:SCR_001383) Copy   


http://meme-suite.org/

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy   


  • RRID:SCR_002143

    This resource has 1000+ mentions.

http://amigo.geneontology.org/

Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.

Proper citation: AmiGO (RRID:SCR_002143) Copy   


  • RRID:SCR_000173

    This resource has 1+ mentions.

http://discover.nci.nih.gov/gominer/GoCommandWebInterface.jsp

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A web program that organizes lists of genes of interest (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology and automates the analysis of multiple microarrays then integrates the results across all of them in exportable output files and visualizations. High-Throughput GoMiner is an enhancement of GoMiner and is implemented with both a command line interface and a web interface. The program can also: efficiently perform automated batch processing of an arbitrary number of microarrays; produce a human- or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories; integrate the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories; provide a fast form of false discovery rate multiple comparisons calculation; and provide annotations and visualizations for relating transcription factor binding sites to genes and GO categories.

Proper citation: High-Throughput GoMiner (RRID:SCR_000173) Copy   


  • RRID:SCR_000653

    This resource has 1+ mentions.

http://gowiki.tamu.edu/wiki/

A wiki where users of the Gene Ontology can contribute and view notes about how specific GO terms are used. GONUTS can also be used as a GO term browser, or to search for GO annotations of specific genes from included organisms. The rationale for this wiki is based on helping new users of the gene ontology understand and use it. The GONUTS wiki is not an official product of the the Gene Ontology consortium. The GO consortium has a public wiki at their website, http://wiki.geneontology.org/. Maintaining the ontology involves many decisions to carefully choose terms and relationships. These decisions are currently made at GO meetings and via online discussion using the GO mailing lists and the Sourceforge curator request tracker. However, it is difficult for someone starting to use GO to understand these decisions. Some insight can be obtained by mining the tracker, the listservs and the minutes of GO meetings, but this is difficult, as these discussions are often dispersed and sometimes don't contain the GO accessions in the relevant messages. Wikis provide a way to create collaboratively written documentation for each GO term to explain how it should be used, how to satisfy the true path requirement, and whether an annotation should be placed at a different level. In addition, the wiki pages provide a discussion space, where users can post questions and discuss possible changes to the ontology. GONUTS is currently set up so anyone can view or search, but only registered users can edit or add pages. Currently registered users can create new users, and we are working to add at least one registered user for each participating database (So far we have registered users at EcoliHub, EcoCyc, GOA, BeeBase, SGD, dictyBase, FlyBase, WormBase, TAIR, Rat Genome Database, ZFIN, MGI, UCL and AgBase...

Proper citation: GONUTS (RRID:SCR_000653) Copy   


  • RRID:SCR_000496

http://scicrunch.org/Aging

Portal devoted to aging relevant scientific data and resources.

Proper citation: Aging Portal (RRID:SCR_000496) Copy   


  • RRID:SCR_004690

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/biosystems/

Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.

Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy   


  • RRID:SCR_004608

    This resource has 500+ mentions.

http://www.ebi.ac.uk/QuickGO/

A web-based browser for Gene Ontology terms and annotations, which is provided by the UniProtKB-GOA group at the EBI. It is able to offer a range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation. The software for QuickGO is freely available under the Apache 2 license. QuickGO can supply GO term information and GO annotation data via REST web services.

Proper citation: QuickGO (RRID:SCR_004608) Copy   


  • RRID:SCR_005050

    This resource has 10+ mentions.

http://www.openphacts.org/

Project that developed an open access discovery platform, called Open Pharmacological Space (OPS), via a semantic web approach, integrating pharmacological data from a variety of information resources and tools and services to question this integrated data to support pharmacological research. The project is based upon the assimilation of data already stored as triples, in the form subject-predicate-object. The software and data are available for download and local installation, under an open source and open access model. Tools and services are provided to query and visualize this data, and a sustainability plan will be in place, continuing the operation of the Open PHACTS Discovery Platform after the project funding ends. Throughout the project, a series of recommendations will be developed in conjunction with the community, building on open standards, to ensure wide applicability of the approaches used for integration of data.

Proper citation: Open PHACTS (RRID:SCR_005050) Copy   


  • RRID:SCR_005327

    This resource has 1+ mentions.

http://services.nbic.nl/copub/portal/

Text mining tool that detects co-occuring biomedical concepts in abstracts from the MedLine literature database. It allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs.

Proper citation: CoPub (RRID:SCR_005327) Copy   


  • RRID:SCR_005778

http://www.garban.org/garban/home.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool

Proper citation: GARBAN (RRID:SCR_005778) Copy   


  • RRID:SCR_005774

    This resource has 1+ mentions.

http://corneliu.henegar.info/FunCluster.htm

FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FunCluster (RRID:SCR_005774) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005766

    This resource has 1+ mentions.

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#GOHyperGAll

To test a sample population of genes for overrepresentation of GO terms, the R/BioC function GOHyperGAll computes for all GO nodes a hypergeometric distribution test and returns the corresponding p-values. A subsequent filter function performs a GO Slim analysis using default or custom GO Slim categories. Basic knowledge about R and BioConductor is required for using this tool. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GOHyperGAll (RRID:SCR_005766) Copy   


  • RRID:SCR_006919

    This resource has 1+ mentions.

http://sourceforge.net/p/fastsemsim/home/Home/

A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FastSemSim (RRID:SCR_006919) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X