Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 14 showing 261 ~ 280 out of 731 results
Snippet view Table view Download 731 Result(s)
Click the to add this resource to a Collection

http://www.genetrap.org/

Consortium represents all publicly available gene trap cell lines, which are available on non-collaborative basis for nominal handling fees. Researchers can search and browse IGTC database for cell lines of interest using accession numbers or IDs, keywords, sequence data, tissue expression profiles and biological pathways, can find trapped genes of interest on IGTC website, and order cell lines for generation of mutant mice through blastocyst injection. Consortium members include: BayGenomics (USA), Centre for Modelling Human Disease (Toronto, Canada), Embryonic Stem Cell Database (University of Manitoba, Canada), Exchangeable Gene Trap Clones (Kumamoto University, Japan), German Gene Trap Consortium provider (Germany), Sanger Institute Gene Trap Resource (Cambridge, UK), Soriano Lab Gene Trap Resource (Mount Sinai School of Medicine, New York, USA), Texas Institute for Genomic Medicine - TIGM (USA), TIGEM-IRBM Gene Trap (Naples, Italy).

Proper citation: International Gene Trap Consortium (RRID:SCR_002305) Copy   


  • RRID:SCR_002360

    This resource has 100+ mentions.

http://discover.nci.nih.gov/gominer/

GoMiner is a tool for biological interpretation of "omic" data including data from gene expression microarrays. Omic experiments often generate lists of dozens or hundreds of genes that differ in expression between samples, raising the question, What does it all mean biologically? To answer this question, GoMiner leverages the Gene Ontology (GO) to identify the biological processes, functions and components represented in these lists. Instead of analyzing microarray results with a gene-by-gene approach, GoMiner classifies the genes into biologically coherent categories and assesses these categories. The insights gained through GoMiner can generate hypotheses to guide additional research. GoMiner displays the genes within the framework of the Gene Ontology hierarchy in two ways: * In the form of a tree, similar to that in AmiGO * In the form of a "Directed Acyclic Graph" (DAG) The program also provides: * Quantitative and statistical analysis * Seamless integration with important public databases GoMiner uses the databases provided by the GO Consortium. These databases combine information from a number of different consortium participants, include information from many different organisms and data sources, and are referenced using a variety of different gene product identification approaches.

Proper citation: GoMiner (RRID:SCR_002360) Copy   


  • RRID:SCR_015060

    This resource has 100+ mentions.

https://dogma.ccbb.utexas.edu/

Web-based annotation tool for plant chloroplasts and animal mitochondrial genomes. DOGMA allows the use of BLAST searches against a custom database, and conservation of basepairing in the secondary structure of animal mitochondrial tRNAs to identify and annotate genes.

Proper citation: DOGMA (RRID:SCR_015060) Copy   


  • RRID:SCR_002134

    This resource has 1000+ mentions.

http://wikipathways.org/

Open and collaborative platform dedicated to curation of biological pathways. Each pathway has dedicated wiki page, displaying current diagram, description, references, download options, version history, and component gene and protein lists. Database of biological pathways maintained by and for scientific community.

Proper citation: WikiPathways (RRID:SCR_002134) Copy   


  • RRID:SCR_001714

    This resource has 100+ mentions.

http://www.homozygositymapper.org/

A web-based approach of homozygosity mapping that can handle tens of thousands markers. User can upload their own SNP genotype files to the database. Intuitive graphic interface is provided to view the homozygous stretches, with the ability of zooming into single chromosomes or user-defined chromosome regions. The underlying genotypes in all samples are displayed. The software is also integrated with our candidate gene search engine, GeneDistiller, so that users can interactively determine the most promising gene. (entry from Genetic Analysis Software)

Proper citation: HOMOZYGOSITYMAPPER (RRID:SCR_001714) Copy   


  • RRID:SCR_008911

    This resource has 100+ mentions.

http://www.nextprot.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 15,2025. Human protein knowledge platform. Knowledge platform for human proteins selects and filters high throughput data pertinent to human proteins from UniProtKB. Extends UniProtKB/Swiss-Prot annotations for human proteins to include several new data types.

Proper citation: neXtProt (RRID:SCR_008911) Copy   


http://www.aniseed.cnrs.fr/

Database of ascidian embryonic development at the level of the genome (cis-regulatory sequences, gene expression, protein annotation), of the cell (morphology, fate, induction, lineage) or of the whole embryo (anatomy, morphogenesis). Currently, four organism models are described in Aniseed: Ciona intestinalis, Ciona savignyi, Halocynthia roretzi and Phallusia mammillata.
This version supports four sets of Ciona intestinalis transcript models: JGI v1.0, KyotoGrail 2005, KH and ENSEMBL, all functionally annotated, and grouped into Aniseedv3.0 gene models. Users can explore their expression profiles during normal or manipulated development, access validated cis-regulatory regions, get the molecular tools used to assay gene function, or all articles related to the function, or regulation of a given gene. Known transcriptional regulators and targets are listed for each gene, as are the gene regulatory networks acting in individual anatomical territories.
ANISEED is a community tool, and the direct involvement of external contributors is important to optimize the quality of the submitted data. Virtual embryo: The 3D Virtual embryo is available to download in the download section of the website.

Proper citation: Ascidian Network for InSitu Expression and Embryological Data (RRID:SCR_013030) Copy   


  • RRID:SCR_014930

    This resource has 100+ mentions.

https://www.mcgill.ca/bic/resources/omega

Open data repository fully dedicated to MEG data in raw and processed form. The archive also contains anatomical MRI volumes and demographic and questionnaire information. Organized and stored as the Brain Imaging Data Structure (BIDS) with the integration of multimodal electrophysiology data. Directly readable by data-analysis software with Brainstorm. OMEGA will continue to expand, with contributions from the scientific community.

Proper citation: Open MEG Archive (RRID:SCR_014930) Copy   


  • RRID:SCR_001243

    This resource has 50+ mentions.

http://igenbio.com/

A web-based genome analysis platform that integrates proprietary functional genomic data, metabolic reconstructions, expression profiling, and biochemical and microbiological data with publicly available information. Focused on microbial genomics, it provides better and faster identification of gene function across all organisms. Building upon a comprehensive genomic database integrated with a collection of microbial metabolic and non-metabolic pathways and using proprietary algorithms, it assigns functions to genes, integrates genes into pathways, and identifies previously unknown or mischaracterized genes, cryptic pathways and gene products. . * Automated and manual annotation of genes and genomes * Analysis of metabolic and non-metabolic pathways to understand organism physiology * Comparison of multiple genomes to identify shared and unique features and SNPs * Functional analysis of gene expression microarray data * Data-mining for target gene discovery * In silico metabolic engineering and strain improvement

Proper citation: ERGO (RRID:SCR_001243) Copy   


http://www.diacomp.org

Consortium serving the diabetic complications community that sponsors annual meetings in complications-relevant scientific areas, solicits and funds pilot projects in high impact areas of complications research, and provides resources and data including animal models, protocols and methods, validation criteria, reagents and resources, histology, publications and bioinformatics for researchers conducting diabetic complications research.

Proper citation: Diabetic Complications Consortium (RRID:SCR_001415) Copy   


  • RRID:SCR_002861

    This resource has 100+ mentions.

http://www.wormatlas.org/

Anatomical atlas about structural anatomy of Caenorhabditis elegans. Provides simple interface allowing user to easily navigate through every anatomical structure of worm. Contains set of images which can be sorted by different characteristics: sex, genotype, age, body portion or tissue type. Includes links to other major worm websites and databases. Application for viewing and downloading thousands of unpublished electron micrographs and associated data. These images have been generated by several labs in the C. elegans community, including the MRC, the Hall lab (Center for C. elegans Anatomy), and the Culotti and Riddle labs.

Proper citation: WormAtlas (RRID:SCR_002861) Copy   


  • RRID:SCR_002853

    This resource has 50+ mentions.

http://viperdb.scripps.edu/

Database for icosahedral virus capsid structures. The emphasis of the resource is on providing data from structural and computational analyses on these systems, as well as high quality renderings for visual exploration. In addition, all virus capsids are placed in a single icosahedral orientation convention, facilitating comparison between different structures. The web site includes powerful search utilities , links to other relevant databases, background information on virus capsid structure, and useful database interface tools. It is an information source for the analysis of high resolution virus structures. VIPERdb is a one-stop site dedicated to helping users around the world examine the many icosahedral virus structures contained within the Protein Data Bank (PDB) by providing them with an easy to use database containing current data and a variety of analytical tools. Sponsors: VIPERdb is funded by the NIH., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: VIPERdb (RRID:SCR_002853) Copy   


http://tabit.ucsd.edu/sdec/

A next-generation web-based application that aims to provide an integrated solution for both visualization and analysis of deep-sequencing data, along with simple access to public datasets.

Proper citation: Systems Transcriptional Activity Reconstruction (RRID:SCR_005622) Copy   


http://www.pathguide.org/

Catalog containing information about 547 biological pathway related resources and molecular interaction related resources. Databases that are free and those supporting BioPAX, CellML, PSI-MI or SBML standards are respectively indicated.

Proper citation: PathGuide: the pathway resource list (RRID:SCR_003248) Copy   


  • RRID:SCR_003238

    This resource has 500+ mentions.

https://osf.io/

Platform to support research and enable collaboration. Used to discover projects, data, materials, and collaborators helpful to your own research.

Proper citation: Open Science Framework (RRID:SCR_003238) Copy   


  • RRID:SCR_003314

    This resource has 10+ mentions.

http://www.elsevier.com/online-tools/pathway-studio/biological-database

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 5, 2023. MedScan is a fast and flexible biomedical information extraction technology. It uses dictionaries to identify individual biomedical terms (proteins, cellular processes, small molecules, diseases, etc) referred to in literature articles, and applies advanced natural language processing techniques to detect the relationships within the article and extract these terms and the relationships; the overall process of detection, identification, extraction and assembling, is termed Information Harvesting. Information extracted by MedScan represents the multiple aspects of protein function, including protein modification, cellular localization, protein-protein interactions, gene expression regulation, molecular transport and synthesis, as well as association with diseases, and regulation of various cellular processes. This scope can be broadened by modifying information extraction rules and the dictionaries. Dictionaries can be assembled on any topic or area that is represented in the literature you wish to harvest. High-throughput data generation methodologies like microarray gene expression require new approaches for gathering information for data analysis. For the best results, computational approaches used for high-throughput data analysis require that biological information from the literature be a coherent and integrated part of the analysis software itself. Pathway Studio meets this challenge through its MedScan Technology and underlying ResNet database. All editions of Pathway Studio contain MedScan Technology to harvest information from the literature and to save this information in the Pathway Studio ResNet database ready for data analysis. MedScan is more than a web search engine. Indeed, the output of a Google search can be channeled into MedScan for example. Web searches, like Google, are excellent at finding items as a result of a query. A quick look at the output list usually locates the item for which you are looking. This approach however, is not well suited for information and knowledge gathering. Also, once information is gathered, where do you put it for later computational use? MedScan meets this challenge for the area of biomedical literature and biomedical online information. PubMed meets the needs for a central repository of biomedical literature. Researchers can go to PubMed and search for any topic and articles of interest, much like a web type of search. However, just like a web type of search, PubMed also provides a list of all the hits with a link to the articles. If a single article, or even just a few, are sought, this search approach is useful. Alternatively, MedScan will list all the articles of interest but additionally scans the text for relationships, highlights these relationships in the articles and then lists these relationships and the biological molecules and processes involved in the relationships in separate tables. The tables of relationships can be viewed graphically in Pathway Studio and can be saved into the ResNet database for use in experimental data analysis.

Proper citation: MedScan (RRID:SCR_003314) Copy   


  • RRID:SCR_003267

    This resource has 10+ mentions.

http://www.nematodes.org/

Nematode & Neglected Genomics (at) The Blaxter Lab is a nematode related portal including databases and services. Resources include genomic and transcriptomic databases for nematodes and other metazoan phyla and freely downloadable software tools for expressed sequence tag analysis, DNA barcode analysis and phylogenomics. Major categories include: * GenePool * 959 Nematode Genomes * Teaching * Research Projects * Bioinformatics Software Tools * Lab Personnel * Lab Wiki * Genomics Databases * NEMBASE4 * Tardigrada: Hypsibius dujardini * Earthworm: Lumbricus rubellus * MolluscDB * ArthropodDB * other Neglected Genomes

Proper citation: nematodes.org (RRID:SCR_003267) Copy   


  • RRID:SCR_003299

    This resource has 100+ mentions.

http://protege.stanford.edu

Protege is a free, open-source platform that provides a growing user community with a suite of tools to construct domain models and knowledge-based applications with ontologies. At its core, Protege implements a rich set of knowledge-modeling structures and actions that support the creation, visualization, and manipulation of ontologies in various representation formats. Protege can be customized to provide domain-friendly support for creating knowledge models and entering data. Further, Protege can be extended by way of a plug-in architecture and a Java-based Application Programming Interface (API) for building knowledge-based tools and applications. An ontology describes the concepts and relationships that are important in a particular domain, providing a vocabulary for that domain as well as a computerized specification of the meaning of terms used in the vocabulary. Ontologies range from taxonomies and classifications, database schemas, to fully axiomatized theories. In recent years, ontologies have been adopted in many business and scientific communities as a way to share, reuse and process domain knowledge. Ontologies are now central to many applications such as scientific knowledge portals, information management and integration systems, electronic commerce, and semantic web services. The Protege platform supports two main ways of modeling ontologies: * The Protege-Frames editor enables users to build and populate ontologies that are frame-based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In this model, an ontology consists of a set of classes organized in a subsumption hierarchy to represent a domain's salient concepts, a set of slots associated to classes to describe their properties and relationships, and a set of instances of those classes - individual exemplars of the concepts that hold specific values for their properties. * The Protege-OWL editor enables users to build ontologies for the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). An OWL ontology may include descriptions of classes, properties and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. These entailments may be based on a single document or multiple distributed documents that have been combined using defined OWL mechanisms (see the OWL Web Ontology Language Guide). Protege is based on Java, is extensible, and provides a plug-and-play environment that makes it a flexible base for rapid prototyping and application development.

Proper citation: Protege (RRID:SCR_003299) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


  • RRID:SCR_003732

    This resource has 50+ mentions.

http://www.isi.edu/integration/karma/

An information integration software tool that enables users to integrate data from a variety of data sources including databases, spreadsheets, delimited text files, XML, JSON, KML and Web APIs. Users integrate information by modeling it according to an ontology of their choice using a graphical user interface that automates much of the process. Karma learns to recognize the mapping of data to ontology classes and then uses the ontology to propose a model that ties together these classes. Users then interact with the system to adjust the automatically generated model. During this process, users can transform the data as needed to normalize data expressed in different formats and to restructure it. Once the model is complete, users can publish the integrated data as RDF or store it in a database.

Proper citation: Karma (RRID:SCR_003732) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X