Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 14 showing 261 ~ 280 out of 585 results
Snippet view Table view Download 585 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_013136

    This resource has 10+ mentions.

http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software application for statistical methods for disease and genetic marker associations using cases and their parents. These methods include an extension of the transmission/disequilibrium test (TDT) for multiple marker alleles, as well as additional general tests sensitive to associations that depend on dominant or recessive genetic mechanisms. (entry from Genetic Analysis Software)

Proper citation: GASSOC (RRID:SCR_013136) Copy   


  • RRID:SCR_013339

http://dlin.web.unc.edu/software/SNPMStat/

A command-line program for the statistical analysis of SNP-disease association in case-control/cohort/cross-sectional studies with potentially missing genotype data. SNPMStat allows the user to estimate or test SNP effects and SNP-environment interactions by maximizing the (observed-data) likelihood that properly accounts for phase uncertainty, study design and gene-environment dependence. For SNPs without missing data, the program performs the standard association analysis. For typed SNPs with missing data or untyped SNPs, the program performs the maximum-likelihood analysis. (entry from Genetic Analysis Software)

Proper citation: SNPMSTAT (RRID:SCR_013339) Copy   


  • RRID:SCR_013341

http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm

Software application (entry from Genetic Analysis Software)

Proper citation: MECPM (RRID:SCR_013341) Copy   


  • RRID:SCR_013351

    This resource has 10+ mentions.

http://www.bios.unc.edu/~lin/software/MAOS/

Software application that implements valid and efficient statistical methods for meta-analysis of genomewide association studies with overlapping subjects. The current release performs logistic regression analysis of individual level data under the additive mode of inheritance. Data from genome-wide association studies are often analyzed jointly for the purposes of combining information from multiple studies of the same disease or comparing results across different disorders. In many instances, the same subjects appear in multiple studies. Failure to account for overlapping subjects can greatly inflate type I error when combining results from multiple studies of the same disease and can drastically reduce power when comparing results across different disorders. (entry from Genetic Analysis Software)

Proper citation: MAOS (RRID:SCR_013351) Copy   


  • RRID:SCR_013127

https://cran.r-project.org/web/packages/ibdreg/index.html

Software package in S-PLUS and R to test genetic linkage with covariates by regression methods with response IBD sharing for relative pairs. Account for correlations of IBD statistics and covariates for relative pairs within the same pedigree. (entry from Genetic Analysis Software)

Proper citation: IBDREG (RRID:SCR_013127) Copy   


  • RRID:SCR_013124

http://www.dkfz.de/en/epidemiologie-krebserkrankungen/software/software.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software program that performs estimation of power and sample sizes required to detect genetic and environmental main, as well as gene-environment interaction (GxE) effects in indirect matched case-control studies (1:1 matching). When the hypothesis of GxE is tested, power/sample size will be estimated for the detection of GxE, as well as for the detection of genetic and environmental marginal effects. Furthermore, power estimation is implemented for the joint test of genetic marginal and GxE effects (Kraft P et al., 2007). Power and sample size estimations are based on Gauderman''s (2002) asymptotic approach for power and sample size estimations in direct studies of GxE. Hardy-Weinberg equilibrium and independence of genotypes and environmental exposures in the population are assumed. The estimates are based on genotypic codes (G=1 (G=0) for individuals who carry a (non-) risk genotype), which depend on the mode of inheritance (dominant, recessive, or multiplicative). A conditional logistic regression approach is used, which employs a likelihood-ratio test with respect to a biallelic candidate SNP, a binary environmental factor (E=1 (E=0) in (un)exposed individuals), and the interaction between these components. (entry from Genetic Analysis Software)

Proper citation: PIAGE (RRID:SCR_013124) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


  • RRID:SCR_009075

    This resource has 1+ mentions.

http://wpicr.wpic.pitt.edu/WPICCompGen/genomic_control/genomic_control.htm

Software application where GC implements the genomic control models. GCF implements the basic Genomic Control approach, but adjusts the p-values for uncertainty in the estimated effect of substructure. This approach is preferable if a large number of tests will be evaluated because it provides a more accurrate assessment of the significance level for small p-values. (entry from Genetic Analysis Software)

Proper citation: GC/GCF (RRID:SCR_009075) Copy   


  • RRID:SCR_009155

http://wpicr.wpic.pitt.edu/WPICCompGen/newcovibd/covibd.htm

Software application that refines linkage analysis of affected sibpairs by considering attributes or environmental exposures thought to affect disease liability. This refinement utilizes a mixture model in which a disease mutation segregates in only a fraction of the sibships, with the rest of the sibships unlinked. Covariate information is used to predict membership within the two groups corresponding to the linked and unlinked sibships. The pre-clustering model uses covariate information to first form two probabilistic clusters and then tests for excess IBD-sharing in the clusters. The Cov-IBD model determines probabilistic group membership by joint consideration of covariate and IBD values. (entry from Genetic Analysis Software)

Proper citation: COVIBD (RRID:SCR_009155) Copy   


  • RRID:SCR_009376

    This resource has 1+ mentions.

https://cran.r-project.org/web/packages/snp.plotter/index.html

An R package that creates publishable-quality plots of p-values using single SNP and/or haplotype data. Main features of the package include options to display a linkage disequilibrium (LD) plot and the ability to plot multiple sets of results simultaneously. Plots can be created using global and/or individual haplotype p-values along with single SNP p-values. Images are created as either Portable Document Format (PDF) or Encapsulated (EPS) files. (entry from Genetic Analysis Software)

Proper citation: R/SNP.PLOTTER (RRID:SCR_009376) Copy   


  • RRID:SCR_007414

    This resource has 10+ mentions.

http://wpicr.wpic.pitt.edu/WPICCompGen/

Software application (entry from Genetic Analysis Software)

Proper citation: R/SPECTRAL-GEM (RRID:SCR_007414) Copy   


  • RRID:SCR_007625

    This resource has 1+ mentions.

https://cran.r-project.org/web/packages/tdthap/index.html

Software package for TDT with extended haplotypes in the R language. R is the public domain dialect of S. It should be possible to port this library to the commercial Splus product. The main problem would be translation of the help files. (entry from Genetic Analysis Software)

Proper citation: R/TDTHAP (RRID:SCR_007625) Copy   


  • RRID:SCR_009212

https://CRAN.R-project.org/package=gma

Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.

Proper citation: GMA (RRID:SCR_009212) Copy   


  • RRID:SCR_009234

    This resource has 1+ mentions.

http://www.hapsample.org/

Web application for simulating SNP genotypes for case-control and affected-child trio studies by resampling from Phase I/II HapMap SNP data. The user provides a list of SNPs to be genotyped, along with a disease model file that describes causal SNPs and their effect sizes. The simulation tool is appropriate for candidate regions or whole-genome scans. (entry from Genetic Analysis Software)

Proper citation: HAP-SAMPLE (RRID:SCR_009234) Copy   


  • RRID:SCR_009375

    This resource has 1+ mentions.

http://pages.stat.wisc.edu/~yandell/qtl/software/qtlbim/

Software library for QTL Bayesian Interval Mapping that provides a Bayesian model selection approach to map multiple interacting QTL. It works on experimentally inbred lines and performs a genome-wide search to locate multiple potential QTL. The package can handle continuous, binary and ordinal traits. (entry from Genetic Analysis Software)

Proper citation: R/QTLBIM (RRID:SCR_009375) Copy   


  • RRID:SCR_001842

    This resource has 500+ mentions.

http://www.genabel.org/packages/GenABEL

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. R software library for genome-wide association analysis for quantitative, binary and time-till-event traits.

Proper citation: GenABEL (RRID:SCR_001842) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   


  • RRID:SCR_002142

    This resource has 500+ mentions.

https://www.snpstats.net/

A web-based application designed from a genetic epidemiology point of view to analyze association studies using single nucleotide polymorphisms (SNPs). For each selected SNP, you will receive: * Allele and genotype frequencies * Test for Hardy-Weinberg equilibrium * Analysis of association with a response variable based on linear or logistic regression * Multiple inheritance models: co-dominant, dominant, recessive, over-dominant and additive * Analysis of interactions (gene-gene or gene-environment) If multiple SNPs are selected: * Linkage disequilibrium statistics * Haplotype frequency estimation * Analysis of association of haplotypes with the response * Analysis of interactions (haplotypes-covariate)

Proper citation: SNPSTATS (RRID:SCR_002142) Copy   


  • RRID:SCR_002105

    This resource has 10000+ mentions.

http://htslib.org/

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

Proper citation: SAMTOOLS (RRID:SCR_002105) Copy   


  • RRID:SCR_005305

    This resource has 5000+ mentions.

http://hmmer.janelia.org/

Tool for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.

Proper citation: Hmmer (RRID:SCR_005305) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X