Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nitrc.org/projects/gamma_suite/
GAMMA suite is an open-source cross-platform data mining software package designed to analyze neuroimaging data. A neuroimaging study often focuses on biomarker detection and classification. We designed and implemented a Bayesian, multivariate, nonparametric suite of algorithms for analyzing neuroimaging data. The GAMMA suite can be used for brain morphometric analysis, lesion-deficit analysis, and functional MR data analysis.
Proper citation: GAMMA (RRID:SCR_009484) Copy
http://www.nitrc.org/projects/autoseg/
A novel C++ based application developped at UNC-Chapel Hill that performs automatic brain tissue classification and structural segmentation. AutoSeg is designed for use with human and non-human primate pediatric, adolescent and adult data. AutoSeg uses a BatchMake pipeline script that includes the main steps of the framework entailing N4 bias field correction, rigid registration to a common coordinate image, tissue segmentation, skull-stripping, intensity rescaling, atlas-based registration, subcortical segmentation and lobar parcellation, regional cortical thickness and intensity statistics. AutoSeg allows efficient batch processing and grid computing to process large datasets and provides quality control visualizations via Slicer3 MRML scenes.
Proper citation: AutoSeg (RRID:SCR_009438) Copy
http://www.nitrc.org/projects/bxh_xcede_tools/
A collection of data processing and image analysis tools for data in BXH or XCEDE format. This includes data format encapsulation/conversion, event-related analysis, QA tools, and more. These tools form the basis of the fBIRN QA procedures and are also distributed as part of the fBIRN Data Upload Scripts.
Proper citation: BXH/XCEDE Tools (RRID:SCR_009439) Copy
http://dsi-studio.labsolver.org
A software for diffusion MR images analysis. The provided functions include reconstruction (DTI, QBI, DSI, and GQI), deterministic fiber tracking, and 3D visualization. It has a window-based interface and operates on Microsoft Windows system.
Proper citation: DSI Studio (RRID:SCR_009557) Copy
http://www.nitrc.org/projects/cmrep/
A set of deformable modeling algorithms for shape analysis and structure-specific normalization. Applications of cm-reps include structure-specific fMRI analysis, DTI analysis, and structural brain mor
Proper citation: cmrep (RRID:SCR_009434) Copy
http://www.brainvoyager.com/products/brainvoyagerqx.html
Commercial neuroimaging software package for multi-modal data analysis and management. It has been programmed in C++ with efficient statistical, numerical, and image processing routines. It supports parallelized basic math routines on all platforms and uses modern multi-core, multi-processor hardware for demanding computational routines.
Proper citation: BrainVoyager (RRID:SCR_013057) Copy
http://www.nitrc.org/projects/biofilmquant/
A semi-automated software tool for dental plaque biofilm quantification in quantitative light-induced fluorescence (QLF) images.
Proper citation: BiofilmQuant (RRID:SCR_014088) Copy
http://www.nitrc.org/projects/atag_mri_scans/
Data sets from the atlasing of the basal ganglia (ATAG) consortium, which provides ultra-high resolution 7Tesla (T) magnetic resonance imaging (MRI) scans from young, middle-aged, and elderly participants. They include whole-brain and reduced field-of-view MP2RAGE and T2 scans with ultra-high resolution at a sub millimeter scale. The data can be used to develop new algorithms that help building new high-resolution atlases both in the basic and clinical neurosciences. They can also be used to inform the exact positioning of deep-brain electrodes relevant in patients with Parkinsons disease and neuropsychiatric diseases.
Proper citation: 7T Structural MRI scans ATAG (RRID:SCR_014084) Copy
http://www.nitrc.org/projects/caworks
A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.
Proper citation: CAWorks (RRID:SCR_014185) Copy
http://sourceforge.net/projects/erppcatoolkit/
This Matlab toolkit is a general purpose tool for editing, visualizing, and analyzing EEG data (both Event Related Potential - ERP and spectral) whose most recent version has been downloaded over 1000 times. Its three chief highlights are: 1) an optimized automatic artifact correction function that includes ICA correction for eye blinks and saccades. 2) Extensive support for easily conducting PCA and ICA through all stages of the procedure, including inspection of reconstituted waveforms and batch ANOVAs. 3) Implementation of robust ANOVAs, including McCarthy-Wood vector test. It has a graphical user interface for point and click usage and comes with an extensive illustrated tutorial. A description of the toolkit was published in Dien (2010) in Journal of Neuroscience Methods. It relies on both internal functions as well as borrowed functions from both EEGlab and FieldTrip.
Proper citation: ERP PCA Toolkit (RRID:SCR_013105) Copy
http://sourceforge.net/projects/gsa-snp/
A tool for the gene-set (or pathway) analysis of a genome-wide association study result. It accepts a genome-wide list of SNPs and their association P-values. It summarizes the SNP P-values into nearby genes. The gene-by-gene summary results are then further summarized by gene-sets such as Gene Ontology, KEGG pathways, or user-created gene-sets. Various standardization and statistical tests can be performed and the resulting gene-sets that pass a significance level after multiple-testing correction are reported. The tool is written in Java and is available as a standalone version.
Proper citation: GSA-SNP (RRID:SCR_013109) Copy
http://www.nitrc.org/projects/shapepopviewer/
Software that allows users to dynamically interact with multiple surfaces simultaneously. It is very useful for visualisation and comparison of 3D surfaces by also displaying their scalars or vectors attributes stored in the points, and allowing the user to simply modify the colormap. ShapePopulationViewer is available as an extension of 3D Slicer.
Proper citation: ShapePopulationViewer (RRID:SCR_014167) Copy
https://www.nitrc.org/search/?type_of_search=group&q=wisconsin&sa.x=0&sa.y=0&sa=Search
Atlases enable alignment of individual scans to improve localization and statistical power of results, and allow comparison of results between studies and institutions. Set of multi subject atlas templates is constructed specifically for functional and structural imaging studies of rhesus macaque.
Proper citation: Rhesus Macaque Brain Atlases (RRID:SCR_017533) Copy
A MATLAB toolbox forpipeline data analysis of resting-state fMRI that is based on Statistical Parametric Mapping (SPM) and a plug-in software within DPABI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), fractional ALFF, degree centrality, voxel-mirrored homotopic connectivity (VMHC) results. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest. DPARSF basic edition is very easy to use while DPARSF advanced edition (alias: DPARSFA) is much more flexible and powerful. DPARSFA can parallel the computation for each subject, and can be used to reorient images interactively or define regions of interest interactively. Users can skip or combine the processing steps in DPARSF advanced edition freely.
Proper citation: DPARSF (RRID:SCR_002372) Copy
A toolbox for Statistical Parametric Mapping (SPM) that provides an extensible framework for voxel level non-parametric permutation/randomization tests of functional Neuroimaging experiments with independent observations. SnPM uses the General Linear Model to construct pseudo t-statistic images, which are then assessed for significance using a standard non-parametric multiple comparisons procedure based on randomization/permutation testing. It is most suitable for single subject PET/SPECT analyses, or designs with low degrees of freedom available for variance estimation. In these situations the freedom to use weighted locally pooled variance estimates, or variance smoothing, makes the non-parametric approach considerably more powerful than conventional parametric approaches, as are implemented in SPM. Further, the non-parametric approach is always valid, given only minimal assumptions. The SnPM toolbox provides an alternative to the Statistics section of SPM.
Proper citation: Statistical non-Parametric Mapping (RRID:SCR_002092) Copy
http://www.nitrc.org/projects/wlfusion/
Matlab toolbox that implements the wavelet-based image fusion technique for orthogonal images, introduced in (Aganj et al, MRM 2012).
Proper citation: Wavelet-based Image Fusion (RRID:SCR_002007) Copy
http://www.nitrc.org/projects/nihgrantees/
This project is meant for planning the NITRC Grantee meetings. A website for organizing meetings for the Neuroimaging Informatics Tools and Resources Clearinghouse, to facilitate participants meeting one another, and promote discussion of common interests and collaboration.
Proper citation: Grantees Meeting for NITRC (RRID:SCR_000419) Copy
Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350
Proper citation: Mindboggle (RRID:SCR_002438) Copy
http://aimlab.cs.uoregon.edu/NEMO/web/
THIS RESOURCE IS NO LONGER IN SERVICE. NIH tombstone webpage lists Project Period : 2009 - 2013. NIH funded project to create EEG and MEG ontologies and ontology based tools. These resources will be used to support representation, classification, and meta-analysis of brain electromagnetic data. Three pillars of NEMO are: DATA, ONTOLOGY, and DATABASE. NEMO data consist of raw EEG, averaged EEG (ERPs), and ERP data analysis results. NEMO ontologies include concepts related to ERP data (including spatial and temporal features of ERP patterns), data provenance, and cognitive and linguistic paradigms that were used to collect data. NEMO database portal is large repository that stores NEMO consortium data, data analysis results, and data provenance. EEG and MEG ontologies and ontology-based tools to support representation, classification, and meta-analysis of brain electromagnetic data. Raw EEG and ERP data may be uploaded to the NEMO FTP site., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Neural ElectroMagnetic Ontologies (NEMO) Project (RRID:SCR_002001) Copy
http://www.nitrc.org/projects/iowa3/
Software for real-time parametric statistical analysis of functional MRI (fMRI) data. The system that combines a general architecture for sampling and time-stamping relevant information channels in fMRI (image acquisition, stimulation, subject responses, cardiac and respiratory monitors, etc.) and an efficient approach to manipulating these data, featuring incremental subsecond multiple linear regression. The advantages of the system are the simplification of event timing and efficient and unified data formatting. Substantial parametric analysis can be performed and displayed in real-time. Immediate (replay) and delayed off-line analysis can also be performed with the same interface. The system provides a time-accounting infrastructure that readily supports standard and innovative approaches to fMRI.
Proper citation: I/OWA (RRID:SCR_000858) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.