Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 11 showing 201 ~ 220 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection

http://www.cdtdb.brain.riken.jp/CDT/Top.jsp

Transcriptomic information (spatiotemporal gene expression profile data) on the postnatal cerebellar development of mice (C57B/6J & ICR). It is a tool for mining cerebellar genes and gene expression, and provides a portal to relevant bioinformatics links. The mouse cerebellar circuit develops through a series of cellular and morphological events, including neuronal proliferation and migration, axonogenesis, dendritogenesis, and synaptogenesis, all within three weeks after birth, and each event is controlled by a specific gene group whose expression profile must be encoded in the genome. To elucidate the genetic basis of cerebellar circuit development, CDT-DB analyzes spatiotemporal gene expression by using in situ hybridization (ISH) for cellular resolution and by using fluorescence differential display and microarrays (GeneChip) for developmental time series resolution. The CDT-DB not only provides a cross-search function for large amounts of experimental data (ISH brain images, GeneChip graph, RT-PCR gel images), but also includes a portal function by which all registered genes have been provided with hyperlinks to websites of many relevant bioinformatics regarding gene ontology, genome, proteins, pathways, cell functions, and publications. Thus, the CDT-DB is a useful tool for mining potentially important genes based on characteristic expression profiles in particular cell types or during a particular time window in developing mouse brains.

Proper citation: Cerebellar Development Transcriptome Database (RRID:SCR_013096) Copy   


http://nt-salkoff.wustl.edu/portal/hgxpp001.aspx?2

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Supplies potassium channel cDNA clones in vectors suitable for functional expression and stocks of gene knockout strains. Supporting this resource base are studies showing the basic biophysical properties of the channels, studies showing the phenotypes of mutants, and information on the cell-type expression patterns of potassium channels. Studies of potassium channel cell-type expression patterns and functional properties; studies of behavioral phenotypes; generation of knockout mutants. Full-length cDNAs encoding C. elegans potassium channels in a vector suitable for functional expression in Xenopus oocytes and mammalian cell lines are available on request. Information is also provided describing the cell-type expression patterns and basic biophysical properties of potassium channels. And data on behavioral phenotypes are also available. C. elegans strains carrying knockouts of potassium channels are also generated and deposited at the C. elegans stock center at the University of Minnesota.

Proper citation: A Comprehensive Resource Base for C. elegans K+ Channels (RRID:SCR_008360) Copy   


http://www.genepaint.org/R0_1.htm

A digital atlas of gene expression patterns in the mouse. Expression patterns are determined by non-radioactive in situ hybridization on serial tissue sections. An accompanying atlas based on maps of sagittal sections at embryonic day 14.5. E14.5 NMRI embryo was prepared, sectioned and imaged identically to the embryos used for in situ hybridization. Maps are accessed from the set viewer page using the appropriate button above the image directory. Both, the in situ hybridization section and the appropriate atlas section can be viewed side-by-side. Section thickness is 20 m and inter-section distance is 100 m. Tissue was stained with cresyl violet (Nissl-method). All sections were digitally scanned using a 5x objective. Structures annotated for gene expression are indicated in the maps with red pointers. Boundaries between brain regions are indicated with dashed yellow lines.

Proper citation: GenePaint Interactive Anatomy Atlas (RRID:SCR_007680) Copy   


  • RRID:SCR_014939

    This resource has 10+ mentions.

http://lincsportal.ccs.miami.edu/dcic-portal/

Portal which provides a unified interface for searching LINCS dataset packages and reagents. Users can use the portal to access datasets, small molecules, cells, genes, proteins and peptides, and antibodies.

Proper citation: LINCS Data Portal (RRID:SCR_014939) Copy   


  • RRID:SCR_017528

    This resource has 1+ mentions.

https://www.jax.org/news-and-insights/2013/february/komp2-mice-phenotyping-and-availability

Knockout Mouse Phenotyping Project, JAX information about their contributions to KOMP2 project. Project to generate and phenotype single gene KO mouse strains from KOMP ES cell lines. Strains are phenotyped using protocols in pipeline designed by International Mouse Phenotyping Consortium. There are three NIH-funded phenotyping centers in United States: JAX, BaSH Consortium (Baylor College of Medicine, the Wellcome Trust Sanger Institute and MRC Harwell), and the DTCC Consortium (University of California at Davis, the Toronto Center for Phenogenomics, Children’s Hospital Oakland Research Institute (CHORI) and Charles River ).

Proper citation: KOMP2 (RRID:SCR_017528) Copy   


  • RRID:SCR_001204

http://ccb.jhu.edu/software/sim4cc/

Software tool as cross species spliced alignment program.Heuristic sequence alignment tool for comparing cDNA sequence with genomic sequence containing homolog of gene in another species.

Proper citation: sim4cc (RRID:SCR_001204) Copy   


http://www.omixon.com/data-analysis-and-pro/

Software application suite to help clinical labs adopt next generation sequencing for the analysis of diagnostic gene targets.

Proper citation: Omixon Target Data Analysis (RRID:SCR_001207) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001480

    This resource has 10+ mentions.

http://globin.cse.psu.edu/

Data and tools for studying the function of DNA sequences, with an emphasis on those involved in the production of hemoglobin. It includes information about naturally-occurring human hemoglobin mutations and their effects, experimental data related to the regulation of the beta-like globin gene cluster, and software tools for comparing sequences with one another to discover regions that are likely to play significant roles.

Proper citation: Globin Gene Server (RRID:SCR_001480) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


https://factory.euromov.eu/sml/index.php

Open source Java library dedicated to semantic measures computation and analysis. Tools based on the SML are also provided through the SML-Toolkit, a command line software giving access to some of the functionalities of the library. The SML and the toolkit can be used to compute semantic similarity and semantic relatedness between semantic elements (e.g. concepts, terms) or entities semantically characterized (e.g. entities defined in a semantic graph, documents annotated by concepts defined in an ontology).

Proper citation: Semantic Measures Library (RRID:SCR_001383) Copy   


  • RRID:SCR_001575

    This resource has 1000+ mentions.

http://amp.pharm.mssm.edu/Enrichr/

A web-based gene list enrichment analysis tool that provides various types of visualization summaries of collective functions of gene lists. It includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes / proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries.

Proper citation: Enrichr (RRID:SCR_001575) Copy   


  • RRID:SCR_001726

    This resource has 1+ mentions.

http://talasso.cnb.csic.es/

Tool for quantification of human miRNA-mRNA Interactions. TaLasso is also available as Matlab or R code.

Proper citation: TaLasso (RRID:SCR_001726) Copy   


https://repository.niddk.nih.gov/study/21

Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.

Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy   


  • RRID:SCR_001587

http://neuronalarchitects.com/ibiofind.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.

Proper citation: iBIOFind (RRID:SCR_001587) Copy   


  • RRID:SCR_001613

    This resource has 10+ mentions.

https://phenogen.org

Website for analyzing microarray data. Software toolbox for storing, analyzing and integrating microarray data and related genotype and phenotype data. The site is particularly suited for combining QTL and microarray data to search for candidate genes contributing to complex traits. In addition, the site allows, if desired by the investigators, sharing of the data. Investigators can conduct in-silico microarray experiments using their own and/or shared data. There are five major sections of the site: Genome/Transcriptome Data Browser, Microarray Analysis Tools, Gene List Analysis Tools, QTL Tools, and Downloads. The genome/transcriptome data browser combines a genome browser with all the microarray, RNA-Seq, and Genomic Sequencing data. This provides an effective platform to view all of this data side by side. Source code is available on GitHub.

Proper citation: PhenoGen Informatics (RRID:SCR_001613) Copy   


http://www.norcomm.org/index.htm

Large-scale research initiative focused on developing and distributing a library of mouse embryonic stem (ES) cell lines carrying single gene trapped or targeted mutations across the mouse genome. NorCOMM's large and growing archive of ES cells is publicly available on a cost-recovery basis from the Canadian Mouse Mutant Repository. As an international public resource, access to clones is unrestricted and nonexclusive. Through NorCOMM's affiliation with the Canadian Mouse Consortium (CMC), NorCOMM also provides clients with a single point of access to regional mouse derivation, phenotyping, genetic and archiving services across Canada. These value-added services can help your company harness NorCOMM's resources for drug discovery, target discovery and preclinical validation.

Proper citation: North American Conditional Mouse Mutagenesis Project (RRID:SCR_001614) Copy   


http://www.tigm.org/

Resource for any researcher looking to obtain knockout mice and embryonic stem (ES) cells quickly and with favorable intellectual property (IP) terms. Our resources include the world’s largest gene trap library of ES cells in the C57BL/6N mouse strain and a constantly expanding repository of cryopreserved germplasm of knockout lines. TIGM provides both ES cell clones and mice as well as other transgenic core services including CRISPR/Cas9-based genome modifications within the Texas A&M system and to the public and private international research community.

Proper citation: Texas A and M Institute for Genomic Medicine (RRID:SCR_001615) Copy   


  • RRID:SCR_001517

    This resource has 10+ mentions.

http://www.stjudebgem.org/web/mainPage/mainPage.php

This database contains gene expression patterns assembled from mouse nervous tissues at 4 time points throughout brain development including embryonic (e) day 11.5, e15.5, postnatal (p) day 7 and adult p42. Using a high throughput in situ hybridization approach we are assembling expression patterns from selected genes and presenting them in a searchable database. The database includes darkfield images obtained using radioactive probes, reference cresyl violet stained sections, the complete nucleotide sequence of the probes used to generate the data and all the information required to allow users to repeat and extend the analyses. The database is directly linked to Pubmed, LocusLink, Unigene and Gene Ontology Consortium housed at the National Center for Biotechnology Information (NCBI) in the National Library of Medicine. These data are provided freely to promote communication and cooperation among research groups throughout the world.

Proper citation: Brain Gene Expression Map (RRID:SCR_001517) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X