Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Database containing the DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented; the most up to date collation of sequence, gene, and other annotations from all databases (eg. Celera published, NCBI, Ensembl, RIKEN, UCSC) as well as unpublished data. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. The objective of this project is to generate a comprehensive description of human chromosome 7 to facilitate biological discovery, disease gene research and medical genetic applications. There are over 360 disease-associated genes or loci on chromosome 7. A major challenge ahead will be to represent chromosome alterations, variants, and polymorphisms and their related phenotypes (or lack thereof), in an accessible way. In addition to being a primary data source, this site serves as a weighing station for testing community ideas and information to produce highly curated data to be submitted to other databases such as NCBI, Ensembl, and UCSC. Therefore, any useful data submitted will be curated and shown in this database. All Chromosome 7 genomic clones (cosmids, BACs, YACs) listed in GBrowser and in other data tables are freely distributed.
Proper citation: Chromosome 7 Annotation Project (RRID:SCR_007134) Copy
http://www.visionnetwork.nei.nih.gov/
The National Eye Institute (NEI) created the VISION Public Information Network for the purpose of communicating with public information officers at NEI grantee institutions. The Network''s primary mission is to work with the NEI in disseminating research results to the national and local media. The Network also works to inform the public of the mission of the National Institutes of Health (NIH) to improve the health of America through medical research. The NEI is part of the NIH, U.S. Department of Health and Human Services (DHHS). General information portal for eye and vision related resources for the public. Sponsors: This resource is supported by the National Eye Institute.
Proper citation: Vision Public Information Network (RRID:SCR_007340) Copy
http://human.brain-map.org/static/brainexplorer
Multi modal atlas of human brain that integrates anatomic and genomic information, coupled with suite of visualization and mining tools to create open public resource for brain researchers and other scientists. Data include magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), histology and gene expression data derived from both microarray and in situ hybridization (ISH) approaches. Brain Explorer 2 is desktop software application for viewing human brain anatomy and gene expression data in 3D.
Proper citation: Allen Human Brain Atlas (RRID:SCR_007416) Copy
http://nsr.bioeng.washington.edu/
Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.
Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy
http://www.viprbrc.org/brc/home.do?decorator=vipr
Provides searchable public repository of genomic, proteomic and other research data for different strains of pathogenic viruses along with suite of tools for analyzing data. Data can be shared, aggregated, analyzed using ViPR tools, and downloaded for local analysis. ViPR is an NIAID-funded resource that support the research of viral pathogens in the NIAID Category A-C Priority Pathogen lists and those causing (re)emerging infectious diseases. It provides a dedicated gateway to SARS-CoV-2 data that integrates data from external sources (GenBank, UniProt, Immune Epitope Database, Protein Data Bank), direct submissions, analysis pipelines and expert curation, and provides a suite of bioinformatics analysis and visualization tools for virology research.
Proper citation: Virus Pathogen Resource (ViPR) (RRID:SCR_012983) Copy
https://www.nia.nih.gov/alzheimers
Portal for Alzheimer's disease that compiles, archives and disseminates information about current treatments, diagnostic tools and ongoing research for health professions, people with AD, their families and the public. The Center provides informational services and referrals for AD symptoms, diagnosis and treatment for patients; clinical trial information and literature searches for researchers; training materials and guidelines for caregivers; and Spanish language resources.
Proper citation: Alzheimer's Disease Education and Referral Center (RRID:SCR_012787) Copy
Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.
Proper citation: KEGG (RRID:SCR_012773) Copy
https://omictools.com/l2l-tool
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.
Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy
https://www.rebuildingakidney.org
A consortium of research projects working to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and their integration into complex structures that replicate human kidney function. Their goal is to coordinate and integrate research to support the development and implementation of strategies such as de novo repair of nephrons, the re-generation of nephrons, and the in vitro engineering of a biological kidney to enhance renal repair and promote the generation of new nephrons in the postnatal organ. Investigators may apply for funding of a kidney-related project through the RBK Partnership Project. Funded projects would join the consortium.
Proper citation: ReBuilding a Kidney (RRID:SCR_014442) Copy
http://cerebrovascularportal.org
Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.
Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy
Evolving portal that will provide interactive tools and resources to allow researchers, clinicians, and students to discover, analyze, and visualize what is known about the brain's organization, and what the evidence is for that knowledge. This project has a current experimental focus: creating the first brainwide mesoscopic connectivity diagram in the mouse. Related efforts for the human brain currently focus on literature mining and an Online Brain Atlas Reconciliation Tool. The primary goal of the Brain Architecture Project is to assemble available knowledge about the structure of the nervous system, with an ultimate emphasis on the human CNS. Such information is currently scattered in research articles, textbooks, electronic databases and datasets, and even as samples on laboratory shelves. Pooling the knowledge across these heterogeneous materials - even simply getting to know what we know - is a complex challenge that requires an interdisciplinary approach and the contributions and support of the greater community. Their approach can be divided into 4 major thrusts: * Literature Curation and Text Mining * Computational Analysis * Resource Development * Experimental Efforts
Proper citation: Brain Architecture Project (RRID:SCR_004283) Copy
The Department of Neurology & Psychiatry aims to 1) provide the best psychiatric and neurological care to patients and their families, 2) discover and investigate new treatments for psychiatric and nervous system disorders, 3) study psychosocial processes in psychiatric and neurological illness, and 4) educate the next generation of practitioners, as well as our patients and the lay community. The Department of Neurology & Psychiatry (DNP) was established on June 1, 2007. The Department has 34 faculty members and is planning continued expansion. There are 7 psychiatrists, 18 neurologists, 4 child neurologists, and 5 NIH-supported PhD investigators. The DNP is one of five departments in the country that combines the disciplines of neurology and psychiatry. We are unique in having two strong residency programs and are the only that attempts to establish a new paradigm in care of patients with neurological and psychiatric disease through co-management initiatives. * Division of Psychiatry: The Psychiatrists work within four areas: Adult, Geriatric, Community, and Forensic Psychiatry. * Division of Neurology: The division has an extremely active stroke/intensive care and general neurology service. We are expanding services in neurocritical care and interventional neurology. * Education: The DNP has approximately 25 residents/fellows in each discipline. * Research: The DNP has robust programs in clinical, basic, and translational research. We emphasize 3 areas in this overview of the DNP. ** Clinical Research Unit ** Psychosocial Processes Group ** Translational Neuromuscular Disease VISION STATEMENT All members of the Saint Louis University Department of Neurology & Psychiatry will collaborate to support state-of-the-art neurological and psychiatric education, compassionate patient care, and a growing research enterprise. The Department will develop the most exciting intellectual environment in the Nation for investigation, treatment, and training in psychiatry and neurology. We will fulfill this Vision in an environment of mutual respect and collaboration.
Proper citation: St. Louis University Department of Neurology and Psychiatry (RRID:SCR_004297) Copy
http://www.abc.net.au/rn/allinthemind/default.htm
Radio National''s weekly foray into all things mental a program (podcast) about the mind, brain and behavior, hosted by Lynne Malcolm (previously by Natasha Mitchell). From dreaming to depression, addiction to artificial intelligence, consciousness to coma, psychoanalysis to psychopathy, free will to forgetting ��All in the Mind��explores the human condition through the mind''s eye. All in the Mind brings together unexpected voices, themes and ideas and engages with both leading thinkers and personal stories. Psychology and human behavior are only part of the equation. The program''s scope is considerably broader and explores themes in science, religion, health, philosophy, education, history and pop culture, with the mind as the key focus.
Proper citation: All In The Mind (RRID:SCR_004240) Copy
Infrastructure for sharing cardiovascular data and data analysis tools. Human ExVivo heart data set and canine ExVivo normal and failing heart data sets are available. Canine hearts atlas and human InVivo atlases are available.
Proper citation: CardioVascular Research Grid (CVRG) (RRID:SCR_004472) Copy
https://www.hupo.org/human-antibody-initiative/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 19, 2022.The mission of the Human Antibody Initiative (HAI) aims to promote and facilitate the use of antibodies for proteomics research. The initiative consists of two separate activities; (1) the generation of a catalogue of validated antibodies from many different sources and (2) a protein atlas for the expression and localization of human proteins in normal and disease tissue. The two separate activities have as their primary deliverables to generate databases with free public accessibility. The Antibody Resource database (www.antibodypedia.org) is aimed to produce a comprehensive catalogue of validated antibodies towards human proteins. This initiative depends on input from a large number of academic groups and commercial companies. The Protein Atlas initiative (www.proteinatlas.org) is aimed to provide comprehensive and annotated database of high-resolution images showing tissue profiles in normal and cancer tissues. Both databases will be open to the public without restriction (no passwords).
Proper citation: HUPO Antibody Initiative (RRID:SCR_004568) Copy
National Brain Tumor Society (NBTS) is a nonprofit organization committed to finding a cure for brain tumors. We aggressively drive strategic research, advocate for public policies that meet the critical needs of the brain tumor community, and provide patient information. Headquartered in Watertown, Massachusetts, with offices in San Francisco, California and Wilmington, Delaware, we host activities throughout the United States. Formed in 2008 by the merger of two leading organizations that had served the brain tumor community, the National Brain Tumor Foundation and the Brain Tumor Society, the National Brain Tumor Society is now the largest brain tumor nonprofit organization in the country. Both legacy organizations had been formed in the 1980s by parents and other people who were committed to increasing both research funding and access to resources specific to brain tumors. In 2010, the Kelly Heinz-Grundner Foundation, a Delaware-based organization, joined NBTS as a wholly-owned subsidiary. Founded in 2005, after the death of Kelly Heinz-Grundner to a brain tumor, the group has contributed to NBTS''s efforts to pursue research and public policies that benefit the brain tumor community. NBTS grant programs are effective for academic researchers, inclusive of industry expertise, and promising for the patient community. All funding is open to both the domestic and international research communities. The Innovation Research Grant Program supports catalytic transformative projects that will significantly move the field forward. These may include out-of-the-box projects or research that is critical to move therapies down the pipeline. Research that represents an incremental advance is not considered innovative. NBTS will accept Innovation Letters of Intent throughout the year. Researchers in academic or industry labs and at all stages of their career may be funded through this program.
Proper citation: National Brain Tumor Society (RRID:SCR_004744) Copy
The Alabama Head Injury Foundation (AHIF) was founded in 1983 to increase public awareness of Traumatic Brain Injury (TBI) and to stimulate the development of supportive services. Today, AHIF is among the largest state brain injury associations in the nation with model programs and statewide services. Its mission is to improve the quality of life for people who have survived traumatic brain injuries and for their families. Whether the injury is mild or severe the life of the injured person and their family is changed forever. The impact can be both emotionally and financially devastating. AHIF provides the information to help clients and families understand the results of injury. AHIF helps access available resources and provides services and programs which meet the unique needs of individuals with traumatic brain injury (TBI) as well as spinal cord injury (SCI) in certain programs.
Proper citation: Alabama Head Injury Foundation (RRID:SCR_004580) Copy
http://www.floridabraintumor.com/homepage.htm
The mission of the Florida Brain Tumor Association (FBTA) is to provide hope, support and education to brain tumor survivors, their families and friends; to conquer brain tumors by funding research into their causes and cures; and to enrich the quality of life of those touched by brain tumors. In October, 1991, the Florida Brain Tumor Association (formerly South Florida Brain Tumor Association) began due to a desperate need from brain tumor survivors and families who were searching for support and a safe place to share their life changing experiences. Beginning in Boca Raton, Florida, as a grass roots organization and a handful of people, the first support group was conceived. Today, there are many additional FBTA support groups, from coast to coast in the state of Florida. The Florida Brain Tumor Association (FBTA) has become a major force in the brain tumor community. We host many fundraisers yearly, donating funds for research to brain tumor centers. The FBTA has hosted over 20 three day conferences, seminars and meetings, attracting thousands of survivors, families and health care professionals in the United States and Canada. Many of the most renowned physicians in the world travel from far and near to present at FBTA conferences. We are proud and grateful for their commitment and dedication to our cause. The FBTA is a not-for-profit 501(c)(3) organization that is supported by contributions from individuals, corporations, and foundations. We are the only organization of this kind, relying on the strength and dedication of our members, who are brain tumor survivors, family members and friends. Our Medical Advisory Board is also voluntary; we are very thankful to them for their generous gifts of time.
Proper citation: Florida Brain Tumor Association (RRID:SCR_004739) Copy
http://www.braintumorkids.org/
Established in 1983 in Atlanta, GA, the Brain Tumor Foundation for Children (BTFC) was the first nonprofit organization in the United States to focus on pediatric brain tumor disease. The mission of the Brain Tumor Foundation for Children is to provide financial assistance, social support, and information for families of children with brain and spinal cord tumors; fund research projects that improve treatment options and search for a cure; and raise public awareness of the disease and advocate on behalf of children who are affected.
Proper citation: Brain Tumor Foundation For Children (RRID:SCR_004735) Copy
http://spot.colorado.edu/~dubin/talks/brodmann/brodmann.html
Reference atlas of Brodmann Areas in the Human Brain with an Emphasis on Vision and Language. Other Pages include: Flat Brodmann Maps, Brodmann Area Names (with locational Descriptions), Flat Visual Area Maps, Language Areas, PopUp Gyri Maps
Proper citation: Brodmann Areas in the Human Brain with an Emphasis on Vision and Language (RRID:SCR_004857) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.