Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 134 results
Snippet view Table view Download 134 Result(s)
Click the to add this resource to a Collection

http://www.cjdats.org

A cooperative research program to explore the issues related to the complex system of offender treatment services. Nine research centers and a Coordinating Center were created in partnership with researchers, criminal justice professionals, and drug abuse treatment practitioners to form a national research infrastructure. The establishment of CJ-DATS is an outstanding example of cooperation among Federal agencies with the research community... We need to understand how to provide better drug treatment services for criminal justice offenders to alter their drug use and criminal behavior. - Dr. Nora Volkow, Director of NIDA. CJ-DATS PHASE I In 2002, NIDA launched the National Criminal Justice����������Drug Abuse Treatment Studies (CJ-DATS). CJ-DATS is a multisite research program aimed at improving the treatment of offenders with drug use disorders and integrating criminal justice and public health responses to drug involved offenders. From 2002 through 2008, CJ-DATS researchers from 9 research centers, a coordinating center, and NIDA worked together with federal, state, and local criminal justice partners to develop and test integrated approaches to the treatment of offenders with drug use disorders. The areas that were studied included: * Assessing Offender Problems * Measuring Progress in Treatment and Recovery * Linking Criminal Justice and Drug Abuse Treatment * Adolescent Interventions * HIV and Hepatitis Risk Reduction * Understanding Systems CJ-DATS PHASE II In 2008, CJ-DATS began to focus on the problems of implementing research-based practices drug treatment practices. This research concerns the organizational and systems processes involved in implementing valid, evidence-based practices to reduce drug use and drug-related recidivism for individuals in the criminal justice system. 12 CJ-DATS Research Centers are conducting implementation research in three primary domains: * Research to improve the implementation of evidence-based assessment processes for offenders with drug problems * Implementing effective treatment for drug-involved offenders * Implementing evidence-based interventions to improve an HIV continuum-of-care for offenders

Proper citation: Criminal Justice Drug Abuse Treatment Studies (RRID:SCR_006996) Copy   


https://github.com/KumarLabJax/JABS-behavior-classifier

Video based phenotyping platform for laboratory mouse. Provides complete details of software and hardware, including 3D designs used for data collection. Data acquisition system consists of video collection hardware and software, behavior labeling and active learning app, and online database for sharing classifiers. Hardware and software solution collects high quality data for behavior analysis.

Proper citation: JAX Animal Behavior System (RRID:SCR_023721) Copy   


  • RRID:SCR_027424

https://github.com/SciCrunch/Antibody-Watch

Text mining antibody specificity from literature. Helps researchers identify potential problems with antibody specificity. By mining the scientific literature and linking findings to Research Resource Identifiers (RRIDs), it provides alerts on antibodies that may yield unreliable results, supporting reproducibility in biomedical research.

Proper citation: Antibody Watch (RRID:SCR_027424) Copy   


  • RRID:SCR_003389

    This resource has 100+ mentions.

http://compbio.uthsc.edu/miRSNP/

Database of naturally occurring DNA variations in microRNA (miRNA) seed regions and miRNA target sites. MicroRNAs pair to the transcripts of protein-coding genes and cause translational repression or mRNA destabilization. SNPs and INDELs in miRNAs and their target sites may affect miRNA-mRNA interaction, and hence affect miRNA-mediated gene repression. The PolymiRTS database was created by scanning 3'UTRs of mRNAs in human and mouse for SNPs and INDELs in miRNA target sites. Then, the potential downstream effects of these polymorphisms on gene expression and higher-order phenotypes are identified. Specifically, genes containing PolymiRTSs, cis-acting expression QTLs, and physiological QTLs in mouse and the results of genome-wide association studies (GWAS) of human traits and diseases are linked in the database. The PolymiRTS database also includes polymorphisms in target sites that have been supported by a variety of experimental methods and polymorphisms in miRNA seed regions.

Proper citation: PolymiRTS (RRID:SCR_003389) Copy   


  • RRID:SCR_001551

    This resource has 10+ mentions.

http://proteomics.ucsd.edu/Software/NeuroPedia/index.html

A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.

Proper citation: NeuroPedia (RRID:SCR_001551) Copy   


  • RRID:SCR_016032

https://github.com/ABCD-STUDY/redcap-importer

Software that automates the process of retrieving and converting data to the format of a RedCap table and allows selection of directories and files for import.

Proper citation: redcap-importer (RRID:SCR_016032) Copy   


http://lucene1.neuinfo.org/nif_resource/monthly_results/current/

An automatic pipeline based on an algorithm that identifies new resources in publications every month to assist the efficiency of NIF curators. The pipeline is also able to find the last time the resource's webpage was updated and whether the URL is still valid. This can assist the curator in knowing which resources need attention. Additionally, the pipeline identifies publications that reference existing NIF Registry resources as this is also of interest. These mentions are available through the Data Federation version of the NIF Registry, http://neuinfo.org/nif/nifgwt.html?query=nlx_144509 The RDF is based on an algorithm on how related it is to neuroscience. (hits of neuroscience related terms). Each potential resource gets assigned a score (based on how related it is to neuroscience) and the resources are then ranked and a list is generated.

Proper citation: NIF Registry Automated Crawl Data (RRID:SCR_012862) Copy   


https://neuinfo.org/mynif/search.php?q=nlx_149462&t=indexable&list=cover&nif=nlx_144509-1

A virtual database that indexes both BioNOT for negation data, and the Resource Discovery Pipeline: an automated resource discovery and semi-automated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. This virtual database currently indexes the following resources: * BioNOT, http://snake.ims.uwm.edu/bionot/index.php?searchterm=mecp2+autism&submit=Search * Resource Discovery Pipeline, http://lucene1.neuinfo.org/nif_resource/current/

Proper citation: Integrated Auto-Extracted Annotation (RRID:SCR_005892) Copy   


  • RRID:SCR_008914

    This resource has 10+ mentions.

http://mialab.mrn.org/data/index.html

An MRI data set that demonstrates the utility of a mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described, provide a useful baseline for future investigations of brain networks in health and disease.

Proper citation: MIALAB - Resting State Data (RRID:SCR_008914) Copy   


http://pingstudy.ucsd.edu/

A large multi-site pediatric MRI and genetics data resource to facilitate studies of the genomic landscape of the developing human brain. It includes information about the developing mental and emotional functions of the children to understand the genetic basis of individual differences in brain structure and connectivity, cognition, and personality. Investigators on the project are studying 1400 children between the ages of 3 and 20 years so that links between genetic variation and developing patterns of brain connectivity can be examined. Investigators interested in the effects of a particular gene will be able to search the database for any brain areas or connections between areas that differ as a function of variation in a particular gene, and also to determine if the genes appear to affect the course of brain development at some point during childhood. A data exploration tool has been created for mapping and analyzing MRI data sets collected for PING and related developmental studies. Approved investigators will be able to view raw image sets and derived 3D brain maps of MRI and DTI data, conduct hypothesis testing, and graph brain area measures as they change across the time course of development. PING Cores * Coordinating Core: Functions include project management, screening of participants and maintaining the database * Neuroimaging Core: applying a standardized high-resolution structural MRI protocol involving 3-D T1-weighted scans, a T2-weighted volume, and a set of diffusion-weighted scans with multiple b values and diffusion directions, scans to estimate MRI relaxation rates, and gradient echo EPI scans for resting state fMRI. Importantly, adaptive motion compensation, using ����??PROMO����??, a novel real-time motion correction algorithm will be used. Specific PING protocols for each scanner manufacturer: ** PING MRI Protocol - GE ** PING MRI Protocol - Philips ** PING MRI Protocol - Siemens * Assessment Core: Cognitive assessments for the PING project are conducted using the NIH Toolbox for Cognition. * Genomics Core: functions as a central repository for receipt of saliva samples collected for each study participant. Once received, samples are catalogued, maintained, and DNA is extracted using state-of-the-field laboratory techniques. Ultimately, genome-wide genotyping is performed on the extracted DNA using the Illumina Human660W-Quad BeadChip. PING involves 10 sites throughout the country including UCSD, University of Hawaii, Scripps Genomics, UCLA, UC Davis, Kennedy Krieger Institute/Johns Hopkins, Sacker Institute/Cornell University, University of Massachusetts, Massachusetts General Hospital/Harvard, and Yale. Families who may want to participate in the study, or others who want to know more about it, may email questions to ping (at) ucsd.edu.

Proper citation: Pediatric Imaging Neurocognition and Genetics (RRID:SCR_008953) Copy   


http://www.nida.nih.gov/mediaguide/index.html

The latest findings on the science of drug abuse and addiction and commonly abused drugs, and lists resources for more information. They are committed to bringing timely, factual information on addiction and treatment to the press and public. NIDA''s Public Information and Liaison Branch (PILB) is part of NIDA''s Office of Science Policy and Communications. Linking scientists, the scientific community, and the media, PILB supports the rapid dissemination of research information to inform policy and to improve practice. NIDA''s goal is to ensure that science - not ideology or anecdote - forms the foundation of public information on drug abuse and addiction. NIDAs online MEDIA GUIDE provides answers on how to find what you need to know about drug abuse and addiction, including information on the basics (The Science of Drug Abuse and Addiction and Commonly Abused Drugs), resources (Where to Find Nationwide Trends and Statistics, NIDA Resources, and Other Government Web Sites for Health and Science Information), NIDAs history and background, a glossary and relevant contact information. NIDA is pleased to offer this guide to the important findings that are emerging as a result of research on addiction and its treatment. NIDA, part of the National Institutes of Health under the U.S. Department of Health and Human Services, supports most of the world''s research on drug abuse and addiction, including basic and behavioral science research that addresses fundamental and essential questions relevant to drug abuse, ranging from its causes and consequences to its treatment and prevention. The purpose of this guide is to give journalists fast and user-friendly access to the latest scientific information but it is useful for anyone interested in how to access accurate information about drug abuse and addiction. In more than three decades as a researcher, I have seen the impact that science and health journalists have had in bringing scientific research to the public. It is through information that Americans gain hope and understanding. I have come to know many of you over the years and remain committed to releasing scientific information as quickly as possible for rapid dissemination to the public. Please keep this guide nearby as a useful tool and let us know how NIDA''s public liaison staff can help you reach your information and deadline needs. A PDF version is available for download.

Proper citation: National Institute on Drug Abuse Media Guide (RRID:SCR_006850) Copy   


  • RRID:SCR_007143

    This resource has 1+ mentions.

http://hendrix.imm.dtu.dk/software/lyngby/

Matlab toolbox for the analysis of functional neuroimages (PET, fMRI). The toolbox contains a number of models: FIR-filter, Lange-Zeger, K-means clustering among others, visualizations and reading of neuroimaging files.

Proper citation: Lyngby (RRID:SCR_007143) Copy   


http://jaxmice.jax.org/list/ra1642.html

Produce new neurological mouse models that could serve as experimental models for the exploration of basic neurobiological mechanisms and diseases. The impetus for the program resulted from the recognition that: * The value of genomic data would remain limited unless more information about the functionality of its individual components became available. * The task of linking genes to specific behavior would best be accomplished by employing a combination of different approaches. In an effort to complement already existing programs, the Neuroscience Mutagenesis Facility decided to use: a random, genome-wide approach to mutagenesis, i.e.N-ethyl-N-nitrosourea (ENU) as the mutagen; a three-generation back-cross breeding scheme to focus on the detection of recessive mutations; behavioral screens selective for the detection of phenotypes deemed useful for the program goals. The resulting mutant mouse lines have been available to the scientific community for the last five years and over 700 NMF mice have been sent to interested investigators for research; these mutant mouse lines will remain available as frozen embryos (which can be re-derived on request) and can be ordered through the JAX customer service at 1-800-422-6423 (or 207-288-5845). The results of the work of the Neuroscience Mutagenesis Facility and that of two other neurogenesis centers, i.e. The Neurogenomics Project at Northwestern University, and the Neuromutagenesis Project of the Tennessee Mouse Genome Consortium, can also be seen at Neuromice.org, a common web site of these three research centers; in addition, information about all mutants produced by these groups has been recorded in MGI.

Proper citation: JAX Neuroscience Mutagenesis Facility (RRID:SCR_007437) Copy   


http://www.cidr.jhmi.edu/

Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.

Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy   


  • RRID:SCR_005660

http://www.drugabuse.gov/news-events/podcasts

Audio clips that highlight research efforts at the National Institute on Drug Abuse and include interviews with prominent NIDA scientists. To listen to these clips, just click Listen Now under the clip summary. You must have Real Media Player or Windows Media Player installed to download these clips. To view a printable transcript of a clip, click View Transcript under the clip summary.

Proper citation: NIDA Podcasts (RRID:SCR_005660) Copy   


http://umcd.humanconnectomeproject.org

Web-based repository and analysis site for connectivity matrices that have been derived from neuroimaging data including different imaging modalities, subject groups, and studies. Users can analyze connectivity matrices that have been shared publicly and upload their own matrices to share or analyze privately.

Proper citation: USC Multimodal Connectivity Database (RRID:SCR_012809) Copy   


  • RRID:SCR_027836

https://doi.org/10.17605/OSF.IO/WDR78

Open source resource of manually curated and expert reviewed infant brain segmentations hosted on OpenNeuro.org. and OSF.io. Anatomical MRI data was segmented from 71 infant imaging visits across 51 participants, using both T1w and T2w images per visit. Images showed dramatic differences in myelination and intensities across 1–9 months, emphasizing the need for densely sampled gold-standard segmentations across early life. This dataset provides a benchmark for evaluating and improving pipelines dependent upon segmentations in the youngest populations. As such, this dataset provides a vitally needed foundation for early-life large-scale studies such as HBCD.

Proper citation: Baby Open Brains (RRID:SCR_027836) Copy   


http://www.jneurosci.org/supplemental/18/12/4570/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 29, 2013. Supplemental data for the paper Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice, by Vytautas P. Bindokas, Chong C. Lee, William F. Colmers, and Richard J. Miller that appears in the Journal of Neuroscience June 15, 1998. You can view digital movies of changes in fluorescence intensity by clicking on the title of interest.

Proper citation: Hippocampal Slice Wave Animations (RRID:SCR_008372) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   


http://www.icpsr.umich.edu/icpsrweb/NAHDAP/

Archive that acquires, preserves and disseminates data relevant to drug addiction and HIV research. Collection of data on drug addiction and HIV infection in United States. Most of datasets are raw data from surveys, interviews, and administrative records. They were originally gathered in research projects and for administrative purposes. Some datasets have been used in published studies. Bibliographies of these studies are available . Provides access to research data and technical assistance for data depositors. Provides e-workshops on data preparation and data systems.

Proper citation: National Addiction and HIV Data Archive Program (NAHDAP) (RRID:SCR_000636) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X