Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Bioanalyzer system is automated electrophoresis tool that provides an analytical evaluation of various samples types in many workflows, including next generation sequencing NGS, gene expression, biopharmaceutical, and gene editing research. Digital data is provided in timely manner and delivers assessment of sizing, quantitation, integrity and purity from DNA, RNA, and proteins. Minimal sample volumes are required for accurate result, and data may be exported in many different formats.
Proper citation: Agilent 2100 Bioanalyzer Instrument (RRID:SCR_018043) Copy
Commercially provides services and products for research in the fields of molecular biology, diagnostics, enzymes and proteins.
Proper citation: NZYTech (RRID:SCR_016772) Copy
Database of hundreds of thousands of products submitted by reagent provider partners, and millions of webpages selected from reagent suppliers. All are organized according to genes, species, and reagent types (antibodies, recombinant proteins, ELISA, siRNA, cDNA clones, biochemicals, and others).
Proper citation: Labome (RRID:SCR_007384) Copy
http://www.signaling-gateway.org/molecule/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 29,2025. Relational database of all significant published qualitative and quantitative information on cell signaling proteins. The Molecule Pages database was developed with the specific aim of allowing interactions, and indeed whole pathways, to be modeled. The goal is to filter the data to present only validated information. In addition, the Gateway is the home of Signaling Update, which provides a one-stop overview of the latest and hottest research in cell signaling for both the specialist and non-specialist alike.
Proper citation: UCSD-Nature Signaling Gateway Molecule Pages (RRID:SCR_006907) Copy
http://www.vilber.de/en/products/gel-documentation/e-box/
Stand alone gel imager for gel documentation. Provides high-resolution images of DNA, RNA or protein gels. Images can either be printed out directly or saved in internal storage. Transfer of data to PC is possible.
Proper citation: Vilber E-BOX CX5 TS gel imager (RRID:SCR_026106) Copy
https://allsheng.com.cn/product_cont_61.html
Nano-100 microspectrophotometer to measure concentration of nucleic acid, protein and cell solution. 0.5 to 2μl of sample volume is required for each measurement. No cuvette is required. At the end of measurement, sample could be either wiped off directly or recovered with pipettor.
Proper citation: ALLSHENG Nano100 Micro-specrophotometer (RRID:SCR_026096) Copy
https://www.bdbiosciences.com/zh-cn/products/instruments/single-cell-multiomics-systems/rhapsody
System allows high-throughput capture of multiomic information from single cells using cartridge workflow and multitier barcoding system. Used for high-throughput, multiomic profiling of single cells. Allows to analyze gene expression at both mRNA and protein levels, as well as other cellular characteristics, using microwell-based system with multitiered barcoding approach.This enables the generation of various next-generation sequencing (NGS) libraries for deeper analysis.
Proper citation: BD Rhapsody Single-Cell Analysis System (RRID:SCR_027096) Copy
https://azurebiosystems.com/products/azure-imaging-systems/azure-600/
Benchtop instrument designed for life science research, specifically for imaging, detecting, and quantifying protein and nucleic acids on gels and blots. It enables multi-channel analysis, including laser infrared (IR) fluorescence, RGB visible fluorescence, and chemiluminescence, allowing for multiplexed Western blots.
Proper citation: Azure Biosystems c600 Imaging System (RRID:SCR_027952) Copy
Software that detects kinase-specific phosphorylation sites. GPS provides a platform able to perform its prediction based on a group-based phosphorylation scoring algorithm. It allows users to query multiple protein sequences through a batch prediction mode.
Proper citation: GPS (RRID:SCR_016374) Copy
http://www.gene-regulation.com/pub/databases.html
In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.
Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy
The research of the group concentrates on the molecular biology of Gram-positive bacteria, with Bacillus subtilis and Lactococcus lactis as the main model organisms. A number of important (human) pathogens are also investigated: Bacillus cereus, Streptococcus pneumoniae and Enterococcus faecalis. The nature of the research is both fundamental and application-oriented. Transcript- and protein profiling by high-throughput technologies such as DNA microarrays and proteomics tools are being used. The very large data sets generated are analyzed by employing existing and novel bioinformatics tools. Major lines of research are in the field of functional genomics of these organisms, using systems- and synthetic biology approaches.
Proper citation: MolGen (RRID:SCR_005700) Copy
The goals of Antibiotic Resistance Genes Database (ARGB) are to provide a centralized compendium of information on antibiotic resistance, to facilitate the consistent annotation of resistance information in newly sequenced organisms, and also to facilitate the identification and characterization of new genes. ARGB contains six types of database groups: - Resistance Type: This database contains information, such as resistance profile, mechanism, requirement, epidemiology for each type. - Resistance Gene: This database contains information, such as resistance profile, resistance type, requirement, protein and DNA sequence for each gene.This database only includes NON-REDUNDANT, NON-VECTOR, COMPLETE genes. - Antibiotic: This database contains information, such as producer, action mechanism, resistance type, for each gene. - Resistance Gene(NonRD): This database contains the same information as Resistance Gene. It does NOT include NON-REDUNDANT, NON-VECTOR genes, but includes INCOMPLETE genes. - Resistance Gene(ALL): This database contains the same information as Resistance Gene. It includes all REDUNDANT, VECTOR AND INCOMPLETE genes. - Resistance Species: This database contains resistance profile and corresponding resistance genes for each species. Furthermore, ARDB also contians three types BLAST database: - Resistance Genes Complete: Contains only NON-REDUNDANT, NON-VECTOR, COMPLETE genes sequences. - Resistance Genes Non-redundant: Contains NON-REDUNDANT, NON-VECTOR, COMPLETE, INCOMPLETE genes sequences. - Resistance Genes All: Contains all REDUNDANT, VECTOR, COMPLETE, INCOMPLETE genes sequences. Lastly, ARDB provides four types of Analytical tools: - Normal BLAST: This function allows an user to input a DNA or protein sequence, and find similar DNA (Nucleotide BLAST) or protein (Protein BLAST) sequences using blastn, blastp, blastx, tblastn, tblastx - RPS BLAST: A web RPSBLAST (RPS BLAST) interface is provided to align a query sequence against the Position Specific Scoring Matrix (PSSM) for each type. Normally, this will give the same annotation information as using regular BLAST mentioned above. - Multiple Sequences BLAST (Genome Annotation): This function allows an user to annotate multiple (less than 5000) query sequences in FASTA format. - Mutation Resistance Identification: This function allows an user to identify mutations that will cause potential antibiotic resistance, for 12 genes (16S rRNA, 23S rRNA, gyrA, gyrB, parC, parE, rpoB, katG, pncA, embB, folP, dfr). ������ :Sponsors: ARDB is funded by Uniformed Services University of the Health Sciences, administered by the Henry Jackson Foundation. :
Proper citation: Antibiotic Resistance Genes Database (RRID:SCR_007040) Copy
http://www.elsevier.com/online-tools/pathway-studio/biological-database
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 5, 2023. MedScan is a fast and flexible biomedical information extraction technology. It uses dictionaries to identify individual biomedical terms (proteins, cellular processes, small molecules, diseases, etc) referred to in literature articles, and applies advanced natural language processing techniques to detect the relationships within the article and extract these terms and the relationships; the overall process of detection, identification, extraction and assembling, is termed Information Harvesting. Information extracted by MedScan represents the multiple aspects of protein function, including protein modification, cellular localization, protein-protein interactions, gene expression regulation, molecular transport and synthesis, as well as association with diseases, and regulation of various cellular processes. This scope can be broadened by modifying information extraction rules and the dictionaries. Dictionaries can be assembled on any topic or area that is represented in the literature you wish to harvest. High-throughput data generation methodologies like microarray gene expression require new approaches for gathering information for data analysis. For the best results, computational approaches used for high-throughput data analysis require that biological information from the literature be a coherent and integrated part of the analysis software itself. Pathway Studio meets this challenge through its MedScan Technology and underlying ResNet database. All editions of Pathway Studio contain MedScan Technology to harvest information from the literature and to save this information in the Pathway Studio ResNet database ready for data analysis. MedScan is more than a web search engine. Indeed, the output of a Google search can be channeled into MedScan for example. Web searches, like Google, are excellent at finding items as a result of a query. A quick look at the output list usually locates the item for which you are looking. This approach however, is not well suited for information and knowledge gathering. Also, once information is gathered, where do you put it for later computational use? MedScan meets this challenge for the area of biomedical literature and biomedical online information. PubMed meets the needs for a central repository of biomedical literature. Researchers can go to PubMed and search for any topic and articles of interest, much like a web type of search. However, just like a web type of search, PubMed also provides a list of all the hits with a link to the articles. If a single article, or even just a few, are sought, this search approach is useful. Alternatively, MedScan will list all the articles of interest but additionally scans the text for relationships, highlights these relationships in the articles and then lists these relationships and the biological molecules and processes involved in the relationships in separate tables. The tables of relationships can be viewed graphically in Pathway Studio and can be saved into the ResNet database for use in experimental data analysis.
Proper citation: MedScan (RRID:SCR_003314) Copy
http://wiki.c2b2.columbia.edu/califanolab/index.php/BCellInteractome.htm
A network of protein-protein, protein-DNA and modulatory interactions in human B cells. The network contains known interactions (reported in public databases) and predicted interactions by a Bayesian evidence integration framework which integrates a variety of generic and context specific experimental clues about protein-protein and protein-DNA interactions with inferences from different reverse engineering algorithms, such as GeneWays and ARACNE. Modulatory interactions are predicted by the MINDY, an algorithm for the prediction of modulators of transcriptional interactions (please refer to the publication section for more information). The BCI can be downloaded as one tab delimited file containing the complete network (BCI.txt) with each type of interaction explicitly defined.
Proper citation: B Cell Interactome (RRID:SCR_008655) Copy
Data repository for integrative/hybrid structural models of macromolecules and their assemblies. This includes atomistic models as well as multi-scale models consisting of different coarse-grained representations.
Proper citation: PDB-Dev (RRID:SCR_016185) Copy
http://tools.thermofisher.com/content/sfs/manuals/nd-1000-v3.8-users-manual-8%205x11.pdf
Spectrophotometer for measurement and analysis of 1 ul samples with high accuracy and reproducibility. Full spectrum from 220nm to 750nm spectrophotometer utilizes patented sample retention technology that employs surface tension alone to hold sample in place. No need for cuvettes. Has capability to measure highly concentrated samples without dilution.
Proper citation: Thermo Scientific Nanodrop 1000 Spectrophotometer (RRID:SCR_016517) Copy
http://cshprotocols.cshlp.org/cgi/collection/behavioral_assays
A bibliography of published Behavioral Assays by Cold Spring Harbor Protocols. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods - a mix of cutting-edge and well-established techniques. Newly commissioned protocols and unsolicited submissions are supplemented with articles based on Cold Spring Harbor Laboratorys renowned courses and manuals. All protocols are up-to-date and presented in a consistent, easy-to-follow format.
Proper citation: Cold Spring Harbor Protocols: Collected Resources - Behavioral Assays (RRID:SCR_001697) Copy
Stable isotope labeling with amino acids in cell culture (SILAC) is a simple and straightforward approach for in vivo incorporation of a label into proteins for mass spectrometry (MS)-based quantitative proteomics. SILAC relies on metabolic incorporation of a given "light" or "heavy" form of the amino acid into the proteins. The method relies on the incorporation of amino acids with substituted stable isotopic nuclei (e.g. deuterium, 13C, 15N). In an experiment, two cell populations are grown in culture media that are identical except that one of them contains a "light" and the other a "heavy" form of a particular amino acid (e.g. 12C and 13C labeled L-lysine, respectively). When the labeled analog of an amino acid is supplied to cells in culture instead of the natural amino acid, it is incorporated into all newly synthesized proteins. After a number of cell divisions, each instance of this particular amino acid will be replaced by its isotope labeled analog. Since there is hardly any chemical difference between the labeled amino acid and the natural amino acid isotopes, the cells behave exactly like the control cell population grown in the presence of normal amino acid. It is efficient and reproducible as the incorporation of the isotope label is 100%. SILAC Applications: - Differential expression of proteins and identification of disease biomarkers - Cell signaling dynamics - Analysis of yeast pheromone signaling pathway - Identification of methylation sites - Identification of protease substrates - Study of protein complexes/protein interactions - Analysis of signaling pathways and effect of pharmacological inhibitors - Subcellular proteomics Sponsors: Supported in part by an NIH Roadmap grant Technology Center for Networks & Pathways of Lysine Modification.
Proper citation: Stable Isotope Labeling with Amino Acids in Cell Culture (RRID:SCR_001873) Copy
http://bioafrica.mrc.ac.za/index.html
The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. HIV Proteomics Resource contains information about each HIV-1 gene product in regard to expression, post-transcriptional / post-translational modifications, localization, functional activities, and potential interactions with viral and host macromolecules. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites.
Proper citation: BioAfrica HIV Informatics in Africa (RRID:SCR_002295) Copy
http://www.stanford.edu/group/nusselab/cgi-bin/wnt/
A resource for members of the Wnt community, providing information on progress in the field, maps on signaling pathways, and methods. The page on reagents lists many resources generously made available to and by the Wnt community. Wnt signaling is discussed in many reviews and in a recent book. There are usually several Wnt meetings per year.
Proper citation: Wnt homepage (RRID:SCR_000662) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.