Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 8 showing 141 ~ 160 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

http://www.iscbfm.org/

The International Society for Cerebral Blood Flow & Metabolism is a corporation operated exclusively for the purpose of promoting the advancement of education in the science of cerebral blood flow and metabolism throughout the world. The ISCBFM produces a quarterly newsletter, an official journal (Journal of Cerebral Blood Flow & Metabolism), have a yearly meeting, opportunities to host summer schools and a job board. ISCBFM members organize summer schools which are courses that have the aim to bring together young and experienced scientists for educational purposes. The biennial Brain Meetings also have a substantial part of the time allocated for educational purposes for young scientists interested in the field of cerebral blood flow and metabolism. Preference will be given to suggestions that are seen as a complement to scheduled courses in connection with the Brain Meetings and to courses that are given in between Brain Meetings.

Proper citation: ISCBFM - International Society for Cerebral Blood Flow and Metabolism (RRID:SCR_001989) Copy   


http://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=1

International society dedicated to advancing understanding of anatomical and functional organization of human brain using neuroimaging. Primary function of society is to provide educational forums for exchange of up-to-the-minute and groundbreaking research across neuroimaging methods and applications. OHBM achieves this through its member led committees and Annual Meeting that is held in different locations throughout the world.

Proper citation: Organization for Human Brain Mapping (RRID:SCR_001978) Copy   


  • RRID:SCR_002066

    This resource has 10+ mentions.

http://www.neuralgate.org/download/NeuralAct

Software to visualize electrocorticographic (ECoG) and possibly also other kinds of neural activity (EEG / EMG/ DOT) on a 3D model of the cortical surface. The tool has been used to produce cortical activation images and image sequences in several recent studies using ECoG. The tool is written in matlab. The package is thoroughly documented and includes a demo.

Proper citation: NeuralAct (RRID:SCR_002066) Copy   


http://adrc.ucsd.edu/

The UCSD ADRC conducts a wide variety of research studies dedicated to understanding the causes, clinical features, and treatments for Alzheimer's disease and related memory disorders. The goal of the center is to discover ways to prevent and eradicate the disease. The Center aims to maintain research subjects, clinical resources, and clinical data to support ongoing and proposed research and to assist in the development of new clinical and interdisciplinary research. An Alzheimer's brain bank with well characterized cases, including Mild Cognitive Impairment and Lewy Body disease, is maintained at the Center.

Proper citation: Shiley-Marcos Alzheimer's Disease Research Center (RRID:SCR_001928) Copy   


  • RRID:SCR_002249

    This resource has 10+ mentions.

http://www.thevirtualbrain.org/

Simulation software for modeling the entire human brain by combining structural and functional data from empirical neuroimaging data. It can generate local field potentials, EEG, MEG and fMRI BOLD data based on neural mass models. The user can also modify the model parameters to match clinical conditions from focal lesions or degenerative disorders.

Proper citation: Virtual brain (RRID:SCR_002249) Copy   


  • RRID:SCR_002166

    This resource has 10+ mentions.

http://www.nitrc.org/projects/voxbo

Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.

Proper citation: VoxBo (RRID:SCR_002166) Copy   


  • RRID:SCR_002241

    This resource has 50+ mentions.

https://www.humanbrainproject.eu/

Global, collaborative effort for neuroscience, medicine and computing to understand brain, its diseases and its computational capabilities. Goal is to obtain access to research, data sources, platforms and infrastructures offered by other organisations, and enabling organizations outside HBP to use HBP platforms to pursue their own research. Coordinating these activities is the responsibility of the European Research Programme.

Proper citation: Human Brain Project EU (RRID:SCR_002241) Copy   


  • RRID:SCR_002227

    This resource has 1+ mentions.

https://www.nitrc.org/projects/uncbcp_4d_atlas/

Software package for constructing longitudinal atlases, which are the necessary steps for many brain-related applications.

Proper citation: 4D Atlases Construction (RRID:SCR_002227) Copy   


http://olympus.magnet.fsu.edu/galleries/ratbrain/index.html

An image gallery of the rat brain labeled via immunofluorescence in coronal, horizontal, and sagittal thick sections using laser scanning confocal microscopy.

Proper citation: Confocal Microscopy Image Gallery - Rat Brain Tissue Sections (RRID:SCR_002432) Copy   


http://www.nitrc.org/projects/msseg

Training material for the MS lesion segmentation challenge 2008 to compare different algorithms to segment the MS lesions from brain MRI scans. Data used for the workshop is composed of 54 brain MRI images and represents a range of patients and pathology which was acquired from Children's Hospital Boston and University of North Carolian. Data has initially been randomized into three groups: 20 training MRI images, 24 testing images for the qualifying and 8 for the onsite contest at the 2008 workshop. The downloadable online database consists now of the training images (including reference segmentations) and all the 32 combined testing images (without segmentations). The naming has not been changed in comparison to the workshop compeition in order to allow easy comparison between the workshop papers and the online database papers. One dataset has been removed (UNC_test1_Case02) due to considerable motion present only in its T2 image (without motion artifacts in T1 and FLAIR). Such a dataset unfairly penalizes methods that use T2 images versus methods that don't use the T2 image. Currently all cases have been segmented by expert raters at each institution. They have significant intersite variablility in segmentation. MS lesion MRI image data for this competition was acquired seperately by Children's Hospital Boston and University of North Carolina. UNC cases were acquired on Siemens 3T Allegra MRI scanner with slice thickness of 1mm and in-plane resolution of 0.5mm. To ease the segmentation process all data has been rigidly registered to a common reference frame and resliced to isotrophic voxel spacing using b-spline based interpolation. Pre-processed data is stored in NRRD format containing an ASCII readable header and a separate uncompressed raw image data file. This format is ITK compatible. If you want to join the competition, you can download data set from links here, and submit your segmentation results at http://www.ia.unc.edu/MSseg after registering your team. They require team name, password, and email address for future contact. Once experiment is completed, you can submit the segmentation data in a zip file format. Please refer submission page for uploading data format.

Proper citation: MS lesion segmentation challenge 2008 (RRID:SCR_002425) Copy   


http://millette.med.sc.edu/Lab%209%2610/histology_of_nervous_tissue.htm

A website for a neuroscience lab class from the University of South Carolina that contains images of different parts of the nervous system and allows students to identify each part and answer questions about it. You should be able to (a) recognize nervous tissue in routine histological sections; (b) distinguish peripheral nerves from dense CT and smooth muscle; (c) recognize the morphological differences between myelinated and unmyelinated nerves at both the light microscopic and electron microscopic levels; (d) recognize nerve cell bodies and their component parts; (e) identify and differentiate dendrites and axons; (f) understand and identify various types of neuroglia, including Schwann cells; (g) understand and identify the structural relationship of the Schwann cell cytoplasm and plasma membrane enveloping axons; (h) understand the general features of nerve synapses. You should be able to draw nerves, cell bodies, Nodes of Ranvier, synapses etc. as they would appear under both the electron and light microscopes.

Proper citation: Histology of Nervous Tissue Laboratory Course (RRID:SCR_002367) Copy   


  • RRID:SCR_002470

    This resource has 10+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/libra-longitudinal-infant-brain-processing-package

A toolbox with graphical user interfaces for processing infant brain MR images. Longitudinal (or single-time-point) multimodality (including T1, T2, and FA) (or single-modality) data can be processed using the toolbox. Main functions of the software (step by step) include image preprocessing, brain extraction, tissue segmentation and brain labeling. Linux operating system (64 bit) is required. A workstation or server with memory >8G is recommended for processing many images simutaneously. The graphical user interfaces and overall framework of the software are implemented in MATLAB. The image processing functions are implemented with the combination of C/C++, MATLAB, Perl and Shell languages. Parallelization technologies are used in the software to speed up image processing.

Proper citation: iBEAT (RRID:SCR_002470) Copy   


http://mitraweb1.cshl.edu:8080/BrainArchitecture/pages/publications.faces

Preliminary database of neuroanatomical connectivity reports specifically for the human brain, which have been manually curated. It includes details (based on manual literature curation) of tract tracing or related connectivity studies conducted in human brain tissue. This database and user interface will be expanded and improved in the near future.

Proper citation: Human Brain Connectivity Database (RRID:SCR_001594) Copy   


  • RRID:SCR_001592

    This resource has 10+ mentions.

http://incf.org/programs/atlasing/projects/waxholm-space

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 1st, 2023. Coordinate based reference space for the mapping and registration of neuroanatomical data. Users can download image volumes representing the canonical Waxholm Space (WHS) adult C57BL/6J mouse brain, which include T1-, T2*-, and T2-Weighted MR volumes (generated at the Duke Center for In-Vivo Microscopy), Nissl-stained optical histology (acquired at Drexel University), and a volume of labels. All volumes are represented at 21.5μ isotropic resolution. Datasets are provided as gzipped NIFTI files.

Proper citation: Waxholm Space (RRID:SCR_001592) Copy   


  • RRID:SCR_001597

    This resource has 1+ mentions.

http://www.neurologychannel.com/

A topical portal which provides information about conditions that affect the nervous system (brain, spinal cord, nerves, and muscles), such as stroke (brain attack), Alzheimer's disease, and back pain. It is a physician developed and monitored source of neurology information for consumers. Additionally, it contains comprehensive condition and treatment information, as well as interactive tools.

Proper citation: Neurologychannel (RRID:SCR_001597) Copy   


  • RRID:SCR_001613

    This resource has 10+ mentions.

https://phenogen.org

Website for analyzing microarray data. Software toolbox for storing, analyzing and integrating microarray data and related genotype and phenotype data. The site is particularly suited for combining QTL and microarray data to search for candidate genes contributing to complex traits. In addition, the site allows, if desired by the investigators, sharing of the data. Investigators can conduct in-silico microarray experiments using their own and/or shared data. There are five major sections of the site: Genome/Transcriptome Data Browser, Microarray Analysis Tools, Gene List Analysis Tools, QTL Tools, and Downloads. The genome/transcriptome data browser combines a genome browser with all the microarray, RNA-Seq, and Genomic Sequencing data. This provides an effective platform to view all of this data side by side. Source code is available on GitHub.

Proper citation: PhenoGen Informatics (RRID:SCR_001613) Copy   


  • RRID:SCR_001517

    This resource has 10+ mentions.

http://www.stjudebgem.org/web/mainPage/mainPage.php

This database contains gene expression patterns assembled from mouse nervous tissues at 4 time points throughout brain development including embryonic (e) day 11.5, e15.5, postnatal (p) day 7 and adult p42. Using a high throughput in situ hybridization approach we are assembling expression patterns from selected genes and presenting them in a searchable database. The database includes darkfield images obtained using radioactive probes, reference cresyl violet stained sections, the complete nucleotide sequence of the probes used to generate the data and all the information required to allow users to repeat and extend the analyses. The database is directly linked to Pubmed, LocusLink, Unigene and Gene Ontology Consortium housed at the National Center for Biotechnology Information (NCBI) in the National Library of Medicine. These data are provided freely to promote communication and cooperation among research groups throughout the world.

Proper citation: Brain Gene Expression Map (RRID:SCR_001517) Copy   


http://www.stat.cmu.edu/~fiasco/

Collection of software designed to analyze fMRI data using a series of processing steps. The input is the raw data, and the outputs are statistical brain maps showing regions of neural activation. Corrections for different systematic variations in the k-space (raw) data obtained from an fMRI session (head motion, ghosting, etc) are performed first. The image is then reconstructed (using the Fast Fourier Transform) and statistical analyses run. The user has a great deal of flexibility in choosing which corrections and statistics are executed. FIASCO emphasizes correct statistical models, for example for group comparisons.

Proper citation: Functional Image Processing software Computational Olio (RRID:SCR_001689) Copy   


http://www.brain-dynamics.net/

The Brain Dynamics Centre (BDC) is a network of centers and units. It achieves a unique exploration of the healthy brain and disorders of brain function. It translates these insights into new ways to tailor treatments to the individual. There approach is: "integrative neuroscience" - bringing together clinical observations, theory, and modern imaging technologies. And it's theoretical framework derives from linking physiology, psychology and evolution. Additionally, BDC also actively researches ADHD and conduct disorder, stress and trauma-related problems, depression and anxiety, anorexia nervosa, psychosis (including early onset) and conversion disorders. The research facilities DBC include assessment, rooms, two cognition-brain function laboratories, genotyping and an MRI Suite with 1.5 and 3T GE systems. BDC is the coordinating site for an international network - BRAINnet. It has over 180 members, and coordinates access to the first standardized database on the human brain for scientific purposes: Brain Resource International Database.

Proper citation: Brain Dynamics Centre (RRID:SCR_001685) Copy   


http://dial.mc.duke.edu/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. The Duke Image Analysis Laboratory (DIAL) is committed to providing comprehensive imaging support in research studies and clinical trials to various agencies. The capabilities of the lab include protocol development, site training and certification, and image archival and analysis for a variety of modalities including magnetic resonance imaging, magnetic resonance spectroscopy, computed tomography and nuclear medicine. DIAL uses the latest technologies to analyze Magnetic Resonance Imaging (MRI) data sets of the brain. Currently the lab is engaged in measurement of the hippocampus, amygdala, caudate, ventricular system, and other brain regional volumes. Each of these techniques have undergone a rigorous validation process. The measurements of brain structures provide a useful means of non-invasively testing for changes in the brain of the patient. Changes over time in the brain can be detected, and evaluated with respect to the treatment that the patient is receiving. Magnetic Resonance Spectroscopy (MRS) allows DIAL to obtain an accurate profile of the chemical content of the brain. This sensitive technique can detect small changes in the metabolic state of the brain; changes that vary in response to administration of therapeutic agents. The ability to detect these subtle shifts in brain chemistry allows DIAL to identify changes in the brain with more sensitivity than allowed by image analysis. In this respect, NMR spectroscopy can provide early detection of changes in the brain, and serves to compliment the data obtained from image analysis. Additionally, DIAL also contains SQUID (Scalable Query Utility and Image Database). It is an image management system developed to facilitate image management in research and clinical trials: SQUID offers secure, redundant image storage and organizational functions for sorting and searching digital images for a variety of modalities including MRI, MRS, CAT Scan, X-Ray and Nuclear Medicine. SQUID can access images directly from DUMC scanners. Data can also be loaded via DICOM CDs, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Duke University Medical Center: Duke Image Analysis Laboratory (RRID:SCR_001716) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X