Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 445 results
Snippet view Table view Download 445 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005848

http://www.ibioseminars.org/

iBioSeminars offers: * Free, on-demand lectures: Many universities/colleges have limited access to high profile leaders in biological research. Our goal is to add 15-20 seminars per year, of similar quality to outstanding lectures that are currently in this library. Access, through web streaming or download, is completely free-of-charge. * Targeting a broad audience: iBioSeminars start with an extended introduction, making them accessible to non-specialists and students, and then progress to cover current research. Senior scientists and students can view and enjoy these lectures. * Education: iBioSeminars are being used by undergraduate and graduate teachers to augment their classroom material. We have now added an education component to this web site (including lecture notes, questions/answers and short video clips for teaching). * International communication: iBioSeminars have viewers in 115 countries and they are being internally promoted in several countries as an educational tool and scientific resource. * Goodwill: Lecturers generously donate their time to prepare these lectures. The project, largely funded by HHMI, is a grass roots efforts with time invested by several individuals at UCSF, HHMI and ASCB.

Proper citation: iBioSeminars (RRID:SCR_005848) Copy   


  • RRID:SCR_007345

    This resource has 500+ mentions.

http://www.physionet.org/

Collection of dissemination and exchange recorded biomedical signals and open-source software for analyzing them. Provides facilities for cooperative analysis of data and evaluation of proposed new algorithm. Providies free electronic access to PhysioBank data and PhysioToolkit software. Offers service and training via on-line tutorials to assist users at entry and more advanced levels. In cooperation with annual Computing in Cardiology conference, PhysioNet hosts series of challenges, in which researchers and students address unsolved problems of clinical or basic scientific interest using data and software provided by PhysioNet. All data included in PhysioBank, and all software included in PhysioToolkit, are carefully reviewed. Researchers are further invited to contribute data and software for review and possible inclusion in PhysioBank and PhysioToolkit. Please review guidelines before submitting material.

Proper citation: PhysioNet (RRID:SCR_007345) Copy   


https://github.com/nbcrrolls/workflows/tree/master/Production/AmberGPUMDSimulation

A workflow for running molecular dynamics simulations. It can be used for all-atom molecular dynamic simulations, which involve five steps of minimization, one step of heating, three steps of equilibration, and one or more instances of production. The input is a set of directories that include the MD simulation input scripts, system topology and coordinate files. Output files are list of plots, simulation trajectories, intermediate files, restart files, and the like.

Proper citation: Molecular Dynamics Workflow (BioKepler) (RRID:SCR_014389) Copy   


  • RRID:SCR_002134

    This resource has 1000+ mentions.

http://wikipathways.org/

Open and collaborative platform dedicated to curation of biological pathways. Each pathway has dedicated wiki page, displaying current diagram, description, references, download options, version history, and component gene and protein lists. Database of biological pathways maintained by and for scientific community.

Proper citation: WikiPathways (RRID:SCR_002134) Copy   


  • RRID:SCR_004182

    This resource has 1+ mentions.

http://avis.princeton.edu/pixie/index.php

bioPIXIE is a general system for discovery of biological networks through integration of diverse genome-wide functional data. This novel system for biological data integration and visualization, allows you to discover interaction networks and pathways in which your gene(s) (e.g. BNI1, YFL039C) of interest participate. The system is based on a Bayesian algorithm for identification of biological networks based on integrated diverse genomic data. To start using bioPIXIE, enter your genes of interest into the search box. You can use ORF names or aliases. If you enter multiple genes, they can be separated by commas or returns. Press ''submit''. bioPIXIE uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the bioPIXIE algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. As you move the mouse over genes in the network, interactions involving these genes are highlighted. If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed. You may need to download the Adobe Scalable Vector Graphic (SVG) plugin to utilize the visualization tool (you will be prompted if you need it).

Proper citation: bioPIXIE (RRID:SCR_004182) Copy   


http://zebrafinch.brainarchitecture.org/

Atlas of high resolution Nissl stained digital images of the brain of the zebra finch, the mainstay of songbird research. The cytoarchitectural high resolution photographs and atlas presented here aim at facilitating electrode placement, connectional studies, and cytoarchitectonic analysis. This initial atlas is not in stereotaxic coordinate space. It is intended to complement the stereotaxic atlases of Akutegawa and Konishi, and that of Nixdorf and Bischof. (Akutagawa E. and Konishi M., stereotaxic atalas of the brain of zebra finch, unpublished. and Nixdorf-Bergweiler B. E. and Bischof H. J., A Stereotaxic Atlas of the Brain Of the Zebra Finch, Taeniopygia Guttata, http://www.ncbi.nlm.nih.gov.) The zebra finch has proven to be the most widely used model organism for the study of the neurological and behavioral development of birdsong. A unique strength of this research area is its integrative nature, encompassing field studies and ethologically grounded behavioral biology, as well as neurophysiological and molecular levels of analysis. The availability of dimensionally accurate and detailed atlases and photographs of the brain of male and female animals, as well as of the brain during development, can be expected to play an important role in this research program. Traditionally, atlases for the zebra finch brain have only been available in printed format, with the limitation of low image resolution of the cell stained sections. The advantages of a digital atlas over a traditional paper-based atlas are three-fold. * The digital atlas can be viewed at multiple resolutions. At low magnification, it provides an overview of brain sections and regions, while at higher magnification, it shows exquisite details of the cytoarchitectural structure. * It allows digital re-slicing of the brain. The original photographs of brain were taken in certain selected planes of section. However, the brains are seldom sliced in exactly the same plane in real experiments. Re-slicing provides a useful atlas in user-chosen planes, which are otherwise unavailable in the paper-based version. * It can be made available on the internet. High resolution histological datasets can be independently evaluated in light of new experimental anatomical, physiological and molecular studies.

Proper citation: Zebrafinch Brain Architecture Project (RRID:SCR_004277) Copy   


  • RRID:SCR_004450

    This resource has 50+ mentions.

http://www.ebi.ac.uk/thornton-srv/databases/profunc/index.html

The ProFunc server had been developed to help identify the likely biochemical function of a protein from its three-dimensional structure. It uses both sequence- and structure-based methods including fold matching, residue conservation, surface cleft analysis, and functional 3D templates, to identify both the protein''''s likely active site and possible homologues in the PDB. Often, where one method fails to provide any functional insight another may be more helpful. You can submit your own structure, analyze an existing PDB entry, or retrieve the results of a previously submitted run. The files are usually stored for about 6 months before being deleted. However, they are stored on a partition that is not backed up; so, in principle, they could disappear at any time.

Proper citation: ProFunc (RRID:SCR_004450) Copy   


  • RRID:SCR_018495

    This resource has 100+ mentions.

https://github.com/DReichLab/AdmixTools

Software package that supports formal tests of whether admixture occurred, and makes it possible to infer admixture proportions and dates.

Proper citation: ADMIXTOOLS (RRID:SCR_018495) Copy   


  • RRID:SCR_019322

    This resource has 1+ mentions.

https://github.com/bondarevts/flucalc

Software tool as MSS-MLE calculator for Luria–Delbrück fluctuation analysis.

Proper citation: FluCalc (RRID:SCR_019322) Copy   


  • RRID:SCR_021946

    This resource has 500+ mentions.

https://github.com/sqjin/CellChat

Software R toolkit for inference, visualization and analysis of cell-cell communication from single cell data.Quantitatively infers and analyzes intercellular communication networks from single-cell RNA-sequencing data. Predicts major signaling inputs and outputs for cells and how those cells and signals coordinate for functions using network analysis and pattern recognition approaches. Classifies signaling pathways and delineates conserved and context specific pathways across different datasets.

Proper citation: CellChat (RRID:SCR_021946) Copy   


  • RRID:SCR_023080

    This resource has 1+ mentions.

https://github.com/plaisier-lab/sygnal

Software pipeline to integrate correlative, causal and mechanistic inference approaches into unified framework that systematically infers causal flow of information from mutations to TFs and miRNAs to perturbed gene expression patterns across patients. Used to decipher transcriptional regulatory networks from multi-omic and clinical patient data. Applicable for integrating genomic and transcriptomic measurements from human cohorts.

Proper citation: SYGNAL (RRID:SCR_023080) Copy   


  • RRID:SCR_023150

    This resource has 10+ mentions.

https://github.com/virajbdeshpande/AmpliconArchitect

Software package designed to call circular DNA from short read WGS data.Used to identify one or more connected genomic regions which have simultaneous copy number amplification and elucidates architecture of amplicon.Used to reconstruct structure of focally amplified regions using whole genome sequencing and validate it extensively on multiple simulated and real datasets, across wide range of coverage and copy numbers.

Proper citation: AmpliconArchitect (RRID:SCR_023150) Copy   


  • RRID:SCR_023924

    This resource has 1+ mentions.

http://carbonyldb.missouri.edu/CarbonylDB/index.php/

Curated data resource of protein carbonylation sites.Manually curated data resource of experimentally confirmed carbonylated proteins and sites.Provides information on other related resources such as list of other oxidative protein modification databases, list of protein oxidation and carbonylation prediction tools.

Proper citation: CarbonylDB (RRID:SCR_023924) Copy   


http://www.nmrfam.wisc.edu/

Provides access and developes NMR technology to advance range of applications and improves the efficiency, rigor and reproducibility of NMR data acquisition and analysis. Houses NMR spectrometers equipped with state-of-the-art probe technology and protocols to support acquisition of high-quality data. Spectrometers range from 500 MHz to 1100 MHz. Service is tailored to the needs of individual users and projects. Provides training and advice on experimental design, best practices for data acquisition, and data analysis. Experienced staff support users with training opportunities including workshops, video tutorials and protocols.

Proper citation: National Magnetic Resonance Facility at Madison (RRID:SCR_001449) Copy   


http://www.lfd.uci.edu/

Biomedical technology research center and training resource that develops novel fluorescence technologies, including instrumentation, methods and software applicable to cellular imaging and the elucidation of dynamic processes in cells. The LFD's main activities are: * Services and Resources: the LFD provides a state-of-the-art laboratory for fluorescence measurements, microscopy and spectroscopy, with technical assistance to visiting scientists. * Research and Development: the LFD designs, tests, and implements advances in the technology of hardware, software, and biomedical applications. * Training and Dissemination: the LFD disseminates knowledge of fluorescence spectroscopic principles, instrumentation, and applications to the scientific community.

Proper citation: Laboratory for Fluorescence Dynamics (RRID:SCR_001437) Copy   


  • RRID:SCR_001439

    This resource has 50+ mentions.

https://biocars.uchicago.edu/

Biomedical technology research center and training resource that is a state-of-the art, national user facility for synchrotron-based studies of dynamic and static properties of macromolecules by X-ray scattering techniques such as crystallography (specializing in time-resolved), small- and wide-angle X-ray scattering and fiber diffraction. BioCARS operates two X-ray beamlines, embedded in a Biosafety Level 3 (BSL-3) facility unique in the U.S. that permits safe studies of biohazardous materials such as human pathogens., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: BioCARS (RRID:SCR_001439) Copy   


  • RRID:SCR_017496

    This resource has 100+ mentions.

http://www.mirtoolsgallery.org/miRToolsGallery/node/1055

Comprehensive resource of microRNA target predictions and expression profiles. Used for whole genome prediction of miRNA target genes. For each miRNA, target genes are selected on basis of sequence complementarity using position weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Provides information about set of genes potentially regulated by particular microRNA, co-occurrence of predicted target sites for multiple microRNAs in mRNA and microRNA expression profiles in tissues. Users are allowed to customize algorithm, numerical parameters, and position-specific rules., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: miRanda (RRID:SCR_017496) Copy   


  • RRID:SCR_017236

    This resource has 100+ mentions.

http://cisbp.ccbr.utoronto.ca

Software tool as catalog of inferred sequence binding preferences. Online library of transcription factors and their DNA binding motifs.

Proper citation: CIS-BP (RRID:SCR_017236) Copy   


  • RRID:SCR_016996

    This resource has 1+ mentions.

http://www.mrmatlas.org/

Resource of targeted proteomics assays to detect and quantify proteins in complex proteome digests by mass spectrometry. Used to quantify the complete human proteome.

Proper citation: SRMAtlas (RRID:SCR_016996) Copy   


http://integrativemodeling.org/

An open source C++ and Python toolbox for solving complex modeling problems, and a number of applications for tackling some common problems in a user-friendly way. Its broad goal is to contribute to a comprehensive structural characterization of biomolecules ranging in size and complexity from small peptides to large macromolecular assemblies, by integrating data from diverse biochemical and biophysical experiments. It can also be used from the Chimera molecular modeling system, or via one of several web applications.

Proper citation: Integrative Modeling Platform (RRID:SCR_002982) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X