Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 346 results
Snippet view Table view Download 346 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_001702

    This resource has 1+ mentions.

http://bioconductor.org/packages/release/bioc/html/nondetects.html

Software R package to model and impute non-detects in results of qPCR experiments.Used to directly model non-detects as missing data.

Proper citation: nondetects (RRID:SCR_001702) Copy   


http://interactome.baderlab.org/

Project portal for the Human Reference Protein Interactome Project, which aims generate a first reference map of the human protein-protein interactome network by identifying binary protein-protein interactions (PPIs). It achieves this by systematically interrogating all pairwise combinations of predicted human protein-coding genes using proteome-scale technologies.

Proper citation: Human Reference Protein Interactome Project (RRID:SCR_015670) Copy   


  • RRID:SCR_022828

    This resource has 100+ mentions.

https://cytotrace.stanford.edu/

Software tool that predicts differentiation state of cells from single cell RNA sequencing data. Used for predicting differentiation states from scRNA-seq data.

Proper citation: CytoTRACE (RRID:SCR_022828) Copy   


  • RRID:SCR_022998

    This resource has 10+ mentions.

https://github.com/walaj/svaba

Software tool for detecting structural variants in sequencing data using genome wide local assembly. Genome wide detection of structural variants and indels by local assembly. Used for detecting SVs from short read sequencing data using genome wide local assembly with low memory and computing requirements.

Proper citation: SvABA (RRID:SCR_022998) Copy   


  • RRID:SCR_023409

    This resource has 1+ mentions.

https://github.com/hetio/hetmatpy

Software Python package for matrix storage and operations on hetnets. Enables identifying relevant network connections between set of query nodes.

Proper citation: HetMatPy (RRID:SCR_023409) Copy   


  • RRID:SCR_023624

    This resource has 10+ mentions.

https://maayanlab.cloud/X2K

Web service to predict involvement of upstream cell signaling pathways, given signature of differentially expressed genes. Used to linking expression signatures to upstream cell signaling networks.

Proper citation: X2K Web (RRID:SCR_023624) Copy   


  • RRID:SCR_023931

    This resource has 1+ mentions.

https://www.cancermodels.org/

Cancer research platform that aggregates clinical, genomic and functional data from various types of patient derived cancer models, xenographs, organoids and cell lines. Open catalog of harmonised patient-derived cancer models. Standardises, harmonises and integrates clinical metadata, molecular and treatment-based data from academic and commercial providers worldwide. Data is FAIR and underpins generation and testing of new hypotheses in cancer mechanisms and personalised medicine development. PDCM Finder have expanded to organoids and cell lines and is now called CancerModels.Org. PDCM Finder was launched in April 2022 as successor of PDX Finder portal, which focused solely on patient-derived xenograft models.

Proper citation: CancerModels.Org (RRID:SCR_023931) Copy   


  • RRID:SCR_005813

    This resource has 1+ mentions.

http://lussierlab.org/GO-Module/GOModule.cgi

GO-Module provides an interface to reduce the dimensionality of GO enrichment results and produce interpretable biomodules of significant GO terms organized by hierarchical knowledge that contain only true positive results. Users can download a text file of GO terms annotated with their significance and identified biomodules, a network visualization of resultant GO IDs or terms in PDF format, and view results in an online table. Platform: Online tool

Proper citation: GO-Module (RRID:SCR_005813) Copy   


  • RRID:SCR_005750

    This resource has 1+ mentions.

http://omniBiomarker.bme.gatech.edu

omniBiomarker is a web-application for analysis of high-throughput -omic data. Its primary function is to identify differentially expressed biomarkers that may be used for diagnostic or prognostic clinical prediction. Currently, omniBiomarker allows users to analyze their data with many different ranking methods simultaneously using a high-performance compute cluster. The next release of omniBiomarker will automatically select the most biologically relevant ranking method based on user input regarding prior knowledge. The omniBiomarker workflow * Data: Gene Expression * Algorithms: Knowledge-Driven Gene Ranking * Differentially expressed Genes * Clinical / Biological Validation * Knowledge: NCI Thesaurus of Cancer, Cancer Gene Index * back to Algorithms

Proper citation: omniBiomarker (RRID:SCR_005750) Copy   


http://www.mc.vanderbilt.edu/root/vumc.php?site=chtn%20western%20division

The Cooperative Human Tissue Network- Western Division at Vanderbilt University Medical Center is one of six institutions throughout the country funded by the National Cancer Institutes to procure and distribute remnant human tissues to biomedical researchers throughout the United States and Canada. CHTN operates through a shared networking system which allows investigators greater access to available research specimens. CHTN offers a variety of preparation and preservation techniques to ensure investigators are receiving the quality specimens needed for research. Remnant tissues are obtained from surgical resections and autopsies and are procured to the specifications of the investigator.

Proper citation: Cooperative Human Tissue Network Western Division at Vanderbilt University Medical Center (RRID:SCR_006661) Copy   


  • RRID:SCR_008712

    This resource has 1+ mentions.

http://www.stanford.edu/group/exonarray/cgi-bin/plot_selector.pl

Transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes. Provides improved cell-type-specific markers for better understanding of neural development, function, and disease.

Proper citation: Exon Array Browser (RRID:SCR_008712) Copy   


http://www.rhesusbase.org/drugDisc/CAM.jsp

OKCAM (Ontology-based Knowledgebase for Cell Adhesion Molecules) is an online resource for human genes known or predicted to be related to the processes of cell adhesion. These genes include members of the cadherin, immunoglobulin/FibronectinIII (IgFn), integrin, neurexin, neuroligin, and catenin families. Totally 496 human CAM genes were compiled and annotated. We have mapped these genes onto a novel cell adhesion molecule ontology (CAMO) that provides a hierarchical description of cell adhesion molecules and their functions. It is intended to provide a means to facilitate better and better understanding of the global and specific properties of CAMs through their genomic features, regulatory modes, expression patterns and disease associations become clearer. You may browse by CAM ontology, Chromosomes and Full Gene list.

Proper citation: OKCAM: Ontology-based Knowledgebase for Cell Adhesion Molecules (RRID:SCR_010696) Copy   


  • RRID:SCR_011796

    This resource has 500+ mentions.

https://genome-cancer.ucsc.edu/

A suite of web-based tools to visualize, integrate and analyze cancer genomics and its associated clinical data. It is possible to display your own clinical data within one of their datasets.

Proper citation: UCSC Cancer Genomics Browser (RRID:SCR_011796) Copy   


  • RRID:SCR_012776

    This resource has 10+ mentions.

http://www.cravat.us/

A web-based application designed with an easy-to-use interface to facilitate the high-throughput assessment and prioritization of genes and missense alterations important for cancer tumorigenesis.

Proper citation: CRAVAT (RRID:SCR_012776) Copy   


  • RRID:SCR_003299

    This resource has 100+ mentions.

http://protege.stanford.edu

Protege is a free, open-source platform that provides a growing user community with a suite of tools to construct domain models and knowledge-based applications with ontologies. At its core, Protege implements a rich set of knowledge-modeling structures and actions that support the creation, visualization, and manipulation of ontologies in various representation formats. Protege can be customized to provide domain-friendly support for creating knowledge models and entering data. Further, Protege can be extended by way of a plug-in architecture and a Java-based Application Programming Interface (API) for building knowledge-based tools and applications. An ontology describes the concepts and relationships that are important in a particular domain, providing a vocabulary for that domain as well as a computerized specification of the meaning of terms used in the vocabulary. Ontologies range from taxonomies and classifications, database schemas, to fully axiomatized theories. In recent years, ontologies have been adopted in many business and scientific communities as a way to share, reuse and process domain knowledge. Ontologies are now central to many applications such as scientific knowledge portals, information management and integration systems, electronic commerce, and semantic web services. The Protege platform supports two main ways of modeling ontologies: * The Protege-Frames editor enables users to build and populate ontologies that are frame-based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In this model, an ontology consists of a set of classes organized in a subsumption hierarchy to represent a domain's salient concepts, a set of slots associated to classes to describe their properties and relationships, and a set of instances of those classes - individual exemplars of the concepts that hold specific values for their properties. * The Protege-OWL editor enables users to build ontologies for the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). An OWL ontology may include descriptions of classes, properties and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. These entailments may be based on a single document or multiple distributed documents that have been combined using defined OWL mechanisms (see the OWL Web Ontology Language Guide). Protege is based on Java, is extensible, and provides a plug-and-play environment that makes it a flexible base for rapid prototyping and application development.

Proper citation: Protege (RRID:SCR_003299) Copy   


  • RRID:SCR_003336

    This resource has 1+ mentions.

http://edoctoring.ncl.ac.uk/Public_site/

Online educational tool that brings challenging clinical practice to your computer, providing medical education that is engaging, challenging and interactive. While there is no substitute for real-life direct contact with patients or colleagues, research has shown that interactive online education can be a highly effective and enjoyable method of learning many components of clinical medicine, including ethics, clinical management, epidemiology and communication skills. eDoctoring offers 25 simulated clinical cases, 15 interactive tutorials and a virtual library containing numerous articles, fast facts and video clips. Their learning material is arranged in the following content areas: * Ethical, Legal and Social Implications of Genetic Testing * Palliative and End-of-Life Care * Prostate Cancer Screening and Shared Decision-Making

Proper citation: eDoctoring (RRID:SCR_003336) Copy   


http://caties.cabig.upmc.edu/

The Cancer Text Information Extraction System (caTIES) provides tools for de-identification and automated coding of free-text structured pathology reports. It also has a client that can be used to search these coded reports. The client also supports Tissue Banking and Honest Broker operations. caTIES focuses on two important challenges of bioinformatics * Information extraction (IE) from free text * Access to tissue. Regarding the first challenge, information from free-text pathology documents represents a vital and often underutilized source of data for cancer researchers. Typically, extracting useful data from these documents is a slow and laborious manual process requiring significant domain expertise. Application of automated methods for IE provides a method for radically increasing the speed and scope with which this data can be accessed. Regarding the second challenge, there is a pressing need in the cancer research community to gain access to tissue specific to certain experimental criteria. Presently, there are vast quantities of frozen tissue and paraffin embedded tissue throughout the country, due to lack of annotation or lack of access to annotation these tissues are often unavailable to individual researchers. caTIES has three goals designed to solve these problems: * Extract coded information from free text Surgical Pathology Reports (SPRs), using controlled terminologies to populate caBIG-compliant data structures. * Provide researchers with the ability to query, browse and create orders for annotated tissue data and physical material across a network of federated sources. With caTIES the SPR acts as a locator to tissue resources. * Pioneer research for distributed text information extraction within the context of caBIG. caTIES focuses on IE from SPRs because they represent a high-dividend target for automated analysis. There are millions of SPRs in each major hospital system, and SPRs contain important information for researchers. SPRs act as tissue locators by indicating the presence of tissue blocks, frozen tissue and other resources, and by identifying the relationship of the tissue block to significant landmarks such as tumor margins. At present, nearly all important data within SPRs are embedded within loosely-structured free-text. For these reasons, SPRs were chosen to be coded through caTIES because facilitating access to information contained in SPRs will have a powerful impact on cancer research. Once SPR information has been run through the caTIES Pipeline, the data may be queried and inspected by the researcher. The goal of this search may be to extract and analyze data or to acquire slides of tissue for further study. caTIES provides two query interfaces, a simple query dashboard and an advanced diagram query builder. Both of these interfaces are capable of NCI Metathesaurus, concept-based searching as well as string searching. Additionally, the diagram interface is capable of advanced searching functionalities. An important aspect of the interface is the ability to manage queries and case sets. Users are able to vet query results and save them to case sets which can then be edited at a later time. These can be submitted as tissue orders or used to derive data extracts. Queries can also be saved, and modified at a later time. caTIES provides the following web services by default: MMTx Service, TIES Coder Service

Proper citation: caTIES - Cancer Text Information Extraction System (RRID:SCR_003444) Copy   


  • RRID:SCR_004236

    This resource has 10+ mentions.

http://www.cancerdiagnosis.nci.nih.gov/

National program to improve the diagnosis and assessment of cancer by moving scientific knowledge into clinical practice by coordinating and funding resources and research for the development of innovative in vitro diagnostics, novel diagnostic technologies and appropriate human specimens. The Cancer Diagnosis Program is divided into four branches: Biorepository and Biospecimen Research Branch (BBRB), Diagnostic Biomarkers and Technology Branch (DBTB), Diagnostics Evaluation Branch (DEB), and the Pathology Investigation and Resources Branch (PIRB).

Proper citation: CDP (RRID:SCR_004236) Copy   


http://pid.nci.nih.gov

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 27, 2016. Curated database of information about known biomolecular interactions and key cellular processes assembled into signaling pathways. All interactions are assembled into pathways, and can be accessed by performing searches for biomolecules, or processes, or by viewing predefined pathways. This was a collaborative project between the NCI and Nature Publishing Group (NPG) from 2006 until September 22nd, 2012, and is no longer being updated. PID is aimed at the cancer research community and others interested in cellular pathways, such as neuroscientists, developmental biologists, and immunologists. The database focuses on the biomolecular interactions that are known or believed to take place in human cells. It can be browsed as an online encyclopedia, used to run computational analyses, or employed in ways that combine these two approaches. In addition to PID''''s predefined pathways, search results are displayed as dynamically constructed interaction networks. These features of PID render it a useful tool for both biologists and bioinformaticians. PID offers a range of search features to facilitate pathway exploration. Users can browse the predefined set of pathways or create interaction network maps centered on a single molecule or cellular process of interest. In addition, the batch query tool allows users to upload long list(s) of molecules, such as those derived from microarray experiments, and either overlay these molecules onto predefined pathways or visualize the complete molecular connectivity map. Users can also download molecule lists, citation lists and complete database content in extensible markup language (XML) and Biological Pathways Exchange (BioPAX) Level 2 format. The database is supplemented by a concise editorial section that includes specially written synopses of recent important research articles in areas related to cancer research, and specially commissioned Bioinformatics Primers that provide practical advice on how to make the most of other relevant online resources. The database and editorial content are updated monthly, and users can opt to receive a monthly email alert to stay informed about new content. Note: as of September 23, 2012 the PID is no longer being actively curated. NCI will maintain the PID website and data for twelve months beyond September 2012 to allow interested parties to obtain the previously curated data before the site is retired in September 2013.

Proper citation: Pathway Interaction Database (RRID:SCR_006866) Copy   


http://seer.cancer.gov/

SEER collects cancer incidence data from population-based cancer registries covering approximately 47.9 percent of the U.S. population. The SEER registries collect data on patient demographics, primary tumor site, tumor morphology, stage at diagnosis, and first course of treatment, and they follow up with patients for vital status.There are two data products available: SEER Research and SEER Research Plus. This was motivated because of concerns about the increasing risk of re-identifiability of individuals. The Research Plus databases require more rigorous process for access that includes user authentication through Institutional Account or multiple-step request process for Non-Institutional users.

Proper citation: Surveillance Epidemiology and End Results (RRID:SCR_006902) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X