Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A public resource for sharing general proteomics information including data (Tranche repository), tools, and news. Joining or creating a group/project provides tools and standards for collaboration, project management, data annotation, permissions, permanent storage, and publication.
Proper citation: Proteome Commons (RRID:SCR_006234) Copy
http://pathogenseq.lshtm.ac.uk/estmoi
A per-based software to estimate multiplicity of infection (MOI) in parasite genomic sequence data. It is primarily developed to address the limitations of current laboratory (PCR) based estimates of multiplicity using high throughput sequence data. It requires a BAM (alignment output of short reads to the reference genome), VCF (a file with information on variant calls) and FASTA (reference genome) files. # Short reads are aligned to a reference genome using BWA, BOWTIE, SMALT or other short read aligners to generate a BAM file. # Single Nucleotide Polymorphisms (SNPs) are then identified using SAMTools/BCFtools and stored in the VCF format. # The reference FASTA file is expected to be indexed using ''samtools faidx'' to generate a *.fai file. estMOI generates files containing MOI estimates for each SNP combinations (file with name *.log) and a summary for all chromosomes (file with name *.txt).
Proper citation: estMOI (RRID:SCR_006192) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 7, 2022. Federation of International Mouse Resources (FIMRe) is a collaborating group of Mouse Repository and Resource Centers worldwide whose collective goal is to archive and provide strains of mice as cryopreserved embryos and gametes, ES cell lines, and live breeding stock to the research community. Goals of the Federation of International Mouse Resources: * Coordinate repositories and resource centers to: ** archive valuable genetically defined mice and ES cell lines being created worldwide ** meet research demand for these genetically defined mice and ES cell lines * Establish consistent, highest quality animal health standards in all resource centers * Provide genetic verification and quality control for genetic background and mutations * Provide resource training to enhance user ability to utilize cryopreserved resources
Proper citation: Federation of International Mouse Resources (RRID:SCR_006137) Copy
http://www.animalgenome.org/pig/genome/db/
Database facilitating information integration and mining within the pig and across species of all genomics / genetics research results accumulated over the years including pig gene expression, quantitative trait loci (QTL), candidate gene, and whole genome association study (WGAS) results. The key functions developed so far include pig gene pages (a centralized gene search tool), a local copy of Biomart (for customizable genome information queries), genome feature alignment tools (Pig QTLdb and Gbrowse), integrated gene expression information (ANEXDB and ESTdb), a dedicated pig genome and gene set BLAST server, and virtual comparative map database and tools (VCmap). By developing the PGD, it is our aim to collaboratively utilize existing databases and tools via networked functions, such as web services, database API, etc., to maximize the potential of all related databases through the PGD implementation.
Proper citation: Pig Genome Database (RRID:SCR_006367) Copy
A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Phytozome (RRID:SCR_006507) Copy
We at NRSP-8 bioinformatics coordination program strive to serve the animal genomics research community to better use computer tools and methods, to best utilize available resources, and in working with researchers in the community, to effectively share, combine, manage, manipulate, and analyze information from genomics/genetics studies. This site is designed as an information center to serve the national animal genome research projects of cattle, chicken, pigs, sheep, horse, and aquaculture species. This is home to databases and web sites (being) built for structural, functional and application oriented studies of the animal genomics, to serve the purpose of research, education and related activities in the scientific, industrial and educational communities in the states and world wide. The challenges in bioinformatics support/research for animal genomics may involve * Effective data collection, organization and management * Rapid development of most needed bioinformatics tools and resources * Efficient use of these tools for innovative data analysis Projects: * Animal Trait Ontology (ATO) Project * Virtual Comparative Genomics * The Past, the Current, and the Potentials * Collaborative and Hosted Works
Proper citation: NAGRP Bioinformatics Coordination Program (RRID:SCR_006564) Copy
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.
Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy
http://www.geenivaramu.ee/en/tools/gwama
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software tool for meta analysis of whole genome association data.
Proper citation: GWAMA (RRID:SCR_006624) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
http://rice.plantbiology.msu.edu/
Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes
Proper citation: Rice Genome Annotation (RRID:SCR_006663) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. A secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. CGHub gives scientific researchers the statistical power of large cancer genome datasets to attack the molecular complexity of cancer.
Proper citation: Cancer Genomics Hub (RRID:SCR_002657) Copy
http://bioweb.ensam.inra.fr/esther
Database and tools for analysis of protein and nucleic acid sequences belonging to superfamily of alpha/beta hydrolases homologous to cholinesterases. Covers multiple species, including human, mouse caenorhabditis and drosophila., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ESTHER (RRID:SCR_002621) Copy
http://www.nitrc.org/projects/penncnv
A free software tool for Copy Number Variation (CNV) detection from SNP genotyping arrays. Currently it can handle signal intensity data from Illumina and Affymetrix arrays. With appropriate preparation of file format, it can also handle other types of SNP arrays and oligonucleotide arrays. PennCNV implements a hidden Markov model (HMM) that integrates multiple sources of information to infer CNV calls for individual genotyped samples. It differs form segmentation-based algorithm in that it considered SNP allelic ratio distribution as well as other factors, in addition to signal intensity alone. In addition, PennCNV can optionally utilize family information to generate family-based CNV calls by several different algorithms. Furthermore, PennCNV can generate CNV calls given a specific set of candidate CNV regions, through a validation-calling algorithm.
Proper citation: PennCNV (RRID:SCR_002518) Copy
http://genespeed.ccf.org/home/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.
Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. Integrated database of genomic, expression and protein data for Drosophila, Anopheles, C. elegans and other organisms. You can run flexible queries, export results and analyze lists of data. FlyMine presents data in categories, with each providing information on a particular type of data (for example Gene Expression or Protein Interactions). Template queries, as well as the QueryBuilder itself, allow you to perform searches that span data from more than one category. Advanced users can use a flexible query interface to construct their own data mining queries across the multiple integrated data sources, to modify existing template queries or to create your own template queries. Access our FlyMine data via our Application Programming Interface (API). We provide client libraries in the following languages: Perl, Python, Ruby and & Java API
Proper citation: FlyMine (RRID:SCR_002694) Copy
Database that collects, integrates and links all relevant primary information from the GABI plant genome research projects and makes them accessible via internet. Its purpose is to support plant genome research in Germany, to yield information about commercial important plant genomes, and to establish a scientific network within plant genomic research.
GreenCards is the main interface for text based retrieval of sequence, SNP, mapping data etc. Sharing and interchange of data among collaborating research groups, industry and the patent- and licensing agency are facilitated.
* GreenCards: Text based search for sequence, mapping, SNP data etc. * Maps: Visualization of genetic or physical maps. * BLAST: Secure BLAST search against different public databases or non-public sequence data stored in GabiPD. * Proteomics: View interactive 2D-gels and view or download information for identified protein spots. Registered users can submit data via secure file upload.
Proper citation: Gabi Primary Database (RRID:SCR_002755) Copy
Database of information regarding genome and metagenome sequencing projects, and their associated metadata, around the world. It also provides information related to organism properties such as phenotype, ecotype and disease. Both complete and ongoing projects, along with their associated metadata, can be accessed. Users can also register, annotate and publish genome and metagenome data.
Proper citation: Genomes Online Database (RRID:SCR_002817) Copy
A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.
Proper citation: GreenPhylDB (RRID:SCR_002834) Copy
Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.
Proper citation: Sal-Site (RRID:SCR_002850) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.