Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Set of measures intended for use in large-scale genomic studies. Facilitate replication and validation across studies. Includes links to standards and resources in effort to facilitate data harmonization to legacy data. Measurement protocols that address wide range of research domains. Information about each protocol to ensure consistent data collection.Collections of protocols that add depth to Toolkit in specific areas.Tools to help investigators implement measurement protocols.
Proper citation: Phenotypes and eXposures Toolkit (RRID:SCR_006532) Copy
http://cancercontrol.cancer.gov/tcrb/tturc/
A transdisciplinary approach to the full spectrum of basic and applied research on tobacco use to reduce the disease burden of tobacco use, including: * Etiology of tobacco use and addiction * Impact of advertising and marketing * Prevention of tobacco use * Treatment of tobacco use and addiction * Identification of biomarkers of tobacco exposure * Identification of genes related to addiction and susceptibility to harm from tobacco Goals * Increase the number of investigators from relevant disciplines who focus on the study of tobacco use as part of transdisciplinary teams. * Generate basic research evidence to improve understanding of the etiology and natural history of tobacco use. * Produce evidence-based tobacco use interventions that can translate to the community and specific understudied or underserved populations. * Increase the number of evidence-based interventions that are novel, including the development, testing and dissemination of innovative behavioral treatments and prevention strategies based upon findings from basic research. * Train transdisciplinary investigators capable of conducting cutting-edge tobacco use research. * Increase the number of peer-reviewed publications in the areas of tobacco use, nicotine addiction, and treatment.
Proper citation: Transdisciplinary Tobacco Use Research Centers (RRID:SCR_006858) Copy
Web based gene set analysis toolkit designed for functional genomic, proteomic, and large-scale genetic studies from which large number of gene lists (e.g. differentially expressed gene sets, co-expressed gene sets etc) are continuously generated. WebGestalt incorporates information from different public resources and provides a way for biologists to make sense out of gene lists. This version of WebGestalt supports eight organisms, including human, mouse, rat, worm, fly, yeast, dog, and zebrafish.
Proper citation: WebGestalt: WEB-based GEne SeT AnaLysis Toolkit (RRID:SCR_006786) Copy
Software repository for comparing structural (MRI) and functional neuroimaging (fMRI, PET, EEG, MEG) software tools and resources. NITRC collects and points to standardized information about structural or functional neuroimaging tool or resource.
Proper citation: NeuroImaging Tools and Resources Collaboratory (NITRC) (RRID:SCR_003430) Copy
http://brainarray.mbni.med.umich.edu/Brainarray/Database/ProbeMatchDB/ncbi_probmatch_para_step1.asp
Matches a list of microarray probes across different microrarray platforms (GeneChip, EST from different vendors, Operon Oligos) and species (human, mouse and rat), based on NCBI UniGene and HomoloGene. The capability to match protein sequence IDs has just been added to facilitate proteomic studies. The ProbeMatchDB is mainly used for the design of verification experiments or comparing the microarray results from different platforms. It can be used for finding equivalent EST clones in the Research Genetics sequence verified clone set based on results from Affymetirx GeneChips. It will also help to identify probes representing orthologous genes across human, mouse and rat on different microarray platforms.
Proper citation: ProbeMatchDB 2.0 (RRID:SCR_003433) Copy
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/
Software R package for weighted correlation network analysis. WGCNA is also available as point-and-click application. Unfortunately this application is not maintained anymore. It is known to have compatibility problems with R-2.8.x and newer, and the methods it implements are not all state of the art., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Weighted Gene Co-expression Network Analysis (RRID:SCR_003302) Copy
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/
Consortium that has aggregated resting state fMRI (R-fMRI) and diffusion imaging data from laboratories around the world, creating an open science resource for the imaging community, that facilitates the assessment of test-retest reliability and reproducibility for functional and structural connectomics. Given that this was a retrospective data collection, they have focused on basic phenotypic measures that are relatively standard in the neuroimaging field, as well as fundamental for analyses and sample characterization. Their phenotypic key is organized to reflect three classifications of variables: 1) core (i.e., minimal variables required to characterize any dataset), 2) preferred (i.e., variables that were strongly suggested for inclusion due to their relative import and/or likelihood of being collected by most sites), and 3) optional (variables that are data-set specific or only shared by a few sites). CoRR includes 33 datasets consisting of: * 1629 Subjects * 3357 Anatomical Scans * 5093 Resting Functional Scans * 1302 Diffusion Scans * 300 CBF and ASL Scans
Proper citation: Consortium for Reliability and Reproducibility (RRID:SCR_003774) Copy
http://synapses.clm.utexas.edu
A portal into the 3D ultrastructure of the brain providing: Anatomy of astrocytes, axons, dendrites, hippocampus, organelles, synapses; procedures of 3D reconstruction and tissue preparation; as well as an atlas of ultrastructural neurocytology (by Josef Spacek), online aligned images, and reconstructed dendrites. Synapse Web hosts an ultrastructural atlas containing more than 500 electron micrographs (added to regularly) that identify unique ultrastructural and cellular components throughout the brain. Additionally, Synapse Web has raw images, reconstructions, and quantitative data along with tutorial instructions and numerous tools for investigating the functional structure of objects that have been serial thin sectioned for electron microscopy.
Proper citation: Synapse Web (RRID:SCR_003577) Copy
Project portal dedicated to understand animal and machine intelligence and repository of data and tools. Suite of tools to analyze and graph imaging data. Image and data repository for large, publicly available neuro-specific data files and images. Contains tools for analytics, databases, cloud computing, and Web-services applied to both big neuroimages and big neurographs.
Proper citation: neurodata (RRID:SCR_014264) Copy
http://www.wakeforestinnovations.com/technology-for-license/demon-voltammetry-and-analysis-software/
A software for performing fast scan cyclic voltammetry recordings in brain tissue for detection of neurotransmitters. It was written in the LabView programming language and can be used to provide command voltage to equipment and record the resulting waveforms. The analysis portion of the software can view and export data, apply noise filters, perform chemometric and waveform kinetic analysis, and create figures.
Proper citation: Demon Voltammetry and Analysis Software (RRID:SCR_014468) Copy
https://datashare.nida.nih.gov
Website which allows data from completed clinical trials to be distributed to investigators and public. Researchers can download de-identified data from completed NIDA clinical trial studies to conduct analyses that improve quality of drug abuse treatment. Incorporates data from Division of Therapeutics and Medical Consequences and Center for Clinical Trials Network.
Proper citation: NIDA Data Share (RRID:SCR_002002) Copy
http://trans.nih.gov/bmap/index.htm
The Brain Molecular Anatomy Project is a trans-NIH project aimed at understanding gene expression and function in the nervous system. BMAP has two major scientific goals: # Gene discovery: to catalog of all the genes expressed in the nervous system, under both normal and abnormal conditions. # Gene expression analysis: to monitor gene expression patterns in the nervous system as a function of cell type, anatomical location, developmental stage, and physiological state, and thus gain insight into gene function. In pursuit of these goals, BMAP has launched several initiatives to provide resources and funding opportunities for the scientific community. These include several Requests for Applications and Requests for Proposals, descriptions of which can be found in this Web site. BMAP is also in the process of establishing physical and electronic resources for the community, including repositories of cDNA clones for nervous system genes, and databases of gene expression information for the nervous system. Most of the BMAP initiatives so far have focused on the mouse as a model species because of the ease of experimental and genetic manipulation of this organism, and because many models of human disease are available in the mouse. However, research in humans, other mammalian species, non-mammalian vertebrates, and invertebrates is also being funded through BMAP. For the convenience of interested investigators, we have established this Web site as a central information resource, focusing on major NIH-sponsored funding opportunities, initiatives, genomic resources available to the research community, courses and scientific meetings related to BMAP initiatives, and selected reports and publications. When appropriate, we will also post initiatives not directly sponsored by BMAP, but which are deemed relevant to its goals. Posting decisions are made by the Trans-NIH BMAP Committee
Proper citation: BMAP - Brain Molecular Anatomy Project (RRID:SCR_008852) Copy
http://www.nitrc.org/projects/dots/
A fast, scalable tool developed at the Johns Hopkins University to automatically segment the major anatomical fiber tracts within the human brain from clinical quality diffusion tensor MR imaging. With an atlas-based Markov Random Field representation, DOTS directly estimates the tract probabilities, bypassing tractography and associated issues. Overlapping and crossing fibers are modeled and DOTS can also handle white matter lesions. DOTS is released as a plug-in for the MIPAV software package and as a module for the JIST pipeline environment. They are therefore cross-platform and compatible with a wide variety of file formats.
Proper citation: DOTS WM tract segmentation (RRID:SCR_009459) Copy
Repository of person centered measures that evaluates and monitors physical, mental, and social health in adults and children.
Proper citation: Patient-Reported Outcomes Measurement Information System (RRID:SCR_004718) Copy
http://www.drugabuseresearchtraining.org/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on November 07, 2012. Decemeber 15, 2011 - Thank you for your interest in DrugAbuseResearchTraining.org. The site, courses, and resources are no longer available. Please send an email to inquiry (at) md-inc.com if you would like to be notified if the site or courses become available again. Introduction to Clinical Drug and Substance Abuse Research Methods is an online training program intended to introduce clinicians and substance abuse professionals to basic clinical research methods. The program is divided into four modules. Each module covers an entire topic and includes self-assessment questions, references, and online resources: * The Neurobiology of Drug Addiction * Biostatistics for Drug and Substance Abuse Research * Evaluating Drug and Substance Abuse Programs * Designing and Managing Drug and Substance Abuse Clinical Trials The learning objectives of this program are to help you: * Evaluate the benefits of alternative investigative approaches for answering important questions in drug abuse evaluation and treatment. * Define the proper levels of measurement and appropriate statistical methods for a clinical study. * Address common problems in data collection and analysis. * Anticipate key human subjects and ethical issues that arise in drug abuse studies. * Interpret findings from the drug abuse research literature and prepare a clinical research proposal. * Prepare research findings for internal distribution or publication in the peer reviewed literature. * Recognize drug addiction as a cyclical, chronic disease. * Understand and describe the brain circuits that are affected by addicting drugs, and explain to others the effects of major classes of addicting drugs on brain neurotransmitters. * Utilize new pharmacologic treatments to manage persons with drug addiction. Physicians can earn AMA PRA Category 1 Credit and purchase a high resolution printable electronic CME certificate(view sample); non-physicians can purchase high resolution printable electronic certificate of course participation that references AMA PRA Category 1 credit (view sample). This program does not offer printed certificates.
Proper citation: Online Education for the International Research Community: AboutIntroduction to Clinical Drug and Substance Abuse Research Methods (RRID:SCR_000802) Copy
Framework for identifying, locating, relating, accessing, integrating, and analyzing information from neuroscience research. Users can search for and add neuroscience-related resources at NIF portal and receive and RRID to track and cite resources within scientific manuscripts.
Proper citation: Neuroscience Information Framework (RRID:SCR_002894) Copy
http://trans.nih.gov/bmap/resources/resources.htm
As part of BMAP gene discovery efforts, mouse brain cDNA libraries and Expressed Sequence Tags (ESTs) have been generated. Through this project a BMAP mouse brain UniGene set consisting of over 24,000 non-redundant members of unique clusters has been developed from EST sequencing of more than 50,000 cDNA clones from 10 regions of adult mouse brain, spinal cord, and retina (http://brainEST.eng.uiowa.edu/). In 2001, NIMH along with NICHD, NIDDK, and NIDA, awarded a contract to the University of Iowa ( M.B. Soares, PI) to isolate full-length cDNA clones corresponding to genes expressed in the developing mouse nervous system and determine their full-coding sequences. The BMAP mouse brain EST sequences can be accessed at NCBI's dbEST database (http://www.ncbi.nlm.nih.gov/dbEST/). Arrayed sets of BMAP mouse brain UniGenes and cDNA libraries, and individual BMAP cDNA clones can be purchased from Open Biosystems, Huntsville, AL (http://www.openbiosystems.com
Proper citation: BMAP cDNA Resources (RRID:SCR_002973) Copy
http://www.drugabuse.gov/about/organization/CEWG/
A network composed of researchers from major metropolitan areas of the United States and selected foreign countries which meet semiannually to discuss the current epidemiology of drug abuse. The primary mission of the Work Group is to provide ongoing community-level surveillance of drug abuse through analysis of quantitative and qualitative research data. Through this program the CEWG provides current descriptive and analytical information regarding the nature and patterns of drug abuse, emerging trends, characteristics of vulnerable populations and social and health consequences. Reports Reports are available from the biannual meetings at which the network members discuss current and emerging problems of substance abuse. At the meetings, CEWG members present data on drug abuse from a variety of city, State, Federal, and other sources. These data are enhanced with information gathered through ethnographic research, focus groups, interviews, and other qualitative methods. This integration of quantitative with qualitative data provides invaluable insight into emerging drug use trends. Book In 1998, the National Institute on Drug Abuse (NIDA) published the first edition of Assessing Drug Abuse Within and Across Communities: Community Epidemiology Surveillance Networks on Drug Abuse to share information on establishing drug abuse epidemiology networks at community and State levels. Its purpose is to provide guidelines for establishing epidemiology networks to monitor and assess drug abuse patterns and trends and emerging drug problems at community and State levels to provide a foundation of information for public health response. The second edition differs from the first in format. For each data source, there is a description of the source and database, followed by guidelines on how to access the data (including Web sites) and what to request, and examples of how the data have been used by epidemiology work groups or Federal agencies. NIDA hopes that this revised guide is helpful to agencies, organizations, and researchers that are involved in or wish to establish epidemiology networks in their communities or States.
Proper citation: Community Epidemiology Work Group (RRID:SCR_002751) Copy
National resource for investigators utilizing human post-mortem brain tissue and related biospecimens for their research to understand conditions of the nervous system. Federated network of brain and tissue repositories in the United States that collects, evaluates, stores, and makes available to researchers, brain and other tissues in a way that is consistent with the highest ethical and research standards. The NeuroBioBank ensures protection of the privacy and wishes of donors. Provides information to the public about the need for tissue donation and how to register as a donor.
Proper citation: NIH NeuroBioBank (RRID:SCR_003131) Copy
http://www.nitrc.org/projects/dti_rat_atlas/
3D DTI anatomical rat brain atlases have been created by the UNC- Chapel Hill Department of Psychiatry and the CAMID research collaboration. There are three age groups, postnatal day 5, postnatal day 14, and postnatal day 72. The subjects were Sprague-Dawley rats that were controls in a study on cocaine abuse and development. The P5 and P14 templates were made from scans of twenty rats each (ten female, ten male); the P72, from six females. The individual cases have been resampled to isotropic resolution, manually skull-stripped, and deformably registered via an unbiased atlas building method to create a template for each age group. Each template was then manually segmented using itk-SNAP software. Each atlas is made up of 3 files, a template image, a segmentation, and a label file.
Proper citation: 3D DTI Atlas of the Rat Brain In Postnatal Day 5 14 and Adulthood (RRID:SCR_009437) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.