Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://sourceforge.net/p/obo/mailman/message/59165700/
A structured controlled vocabulary of the anatomy of Drosophila melanogaster. These ontologies are query-able reference sources for information on Drosophila anatomy and developmental stages. They also provide controlled vocabularies for use in annotation and classification of data related to Drosophila anatomy, such as gene expression, phenotype and images. They were originally developed by FlyBase, who continue to maintain them and have used them for over 200,000 annotations of phenotypes and expression. Extensive use of synonyms means that, given a suitably sophisticated autocomplete, users can find relevant content by searching with almost any anatomical term they find in the literature. These ontologies are developed in the web ontology language OWL2. Their extensive formalization in OWL can be used to drive sophisticated query systems.
Proper citation: Drosophila anatomy and development ontologies (RRID:SCR_001607) Copy
Community standard for pathway data sharing. Standard language that aims to enable integration, exchange, visualization and analysis of biological pathway data. Supports data exchange between pathway data groups and thus reduces complexity of interchange between data formats by providing accepted standard format for pathway data. Open and collaborative effort by community of researchers, software developers, and institutions. BioPAX is defined in OWL DL and is represented in RDF/XML format.Uses W3C standard Web Ontology Language, OWL.
Proper citation: Biological Pathways Exchange (RRID:SCR_001681) Copy
https://repository.niddk.nih.gov/study/21
Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.
Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy
http://amigo.geneontology.org/
Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.
Proper citation: AmiGO (RRID:SCR_002143) Copy
http://www.pathwaycommons.org/pc
Database of publicly available pathways from multiple organisms and multiple sources represented in a common language. Pathways include biochemical reactions, complex assembly, transport and catalysis events, and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathways were downloaded directly from source databases. Each source pathway database has been created differently, some by manual extraction of pathway information from the literature and some by computational prediction. Pathway Commons provides a filtering mechanism to allow the user to view only chosen subsets of information, such as only the manually curated subset. The quality of Pathway Commons pathways is dependent on the quality of the pathways from source databases. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. It currently contains data from nine databases with over 1,668 pathways, 442,182 interactions,414 organisms and will be continually expanded and updated. (April 2013)
Proper citation: Pathway Commons (RRID:SCR_002103) Copy
Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.
Proper citation: SAMTOOLS (RRID:SCR_002105) Copy
A question answer forum for scientists, focusing on methods in bioinformatics, computational genomics and biological data analysis. They welcome detailed and specific posts, written clearly and simply.
Proper citation: BioStar (RRID:SCR_002580) Copy
Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.
Proper citation: Gene Ontology (RRID:SCR_002811) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.
Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy
A disease / disorder relationships explorer and a sample of a map-oriented scientific work. It uses the Human Disease Network dataset and allows intuitive knowledge discovery by mapping its complexity. The Human Disease Network (official) dataset, a poster of the data and related book (Biology - The digital era, ISBN: 978-2-271-06779-1) are available. This kind of data has a network-like organization, and relations between elements are at least as important as the elements themselves. More data could be integrated to this prototype and could eventually bring closer phenotype and genotype. Results should be visual, but also printable. Creating posters can enhance collaborative work. It facilitates discussion and sharing of ideas about the data. This website initiative is an invitation to think about the benefits of networks exploration but above all it tries to outline future designs of scientific information systems.
Proper citation: Diseasome (RRID:SCR_002792) Copy
http://purl.bioontology.org/ontology/DOID
Comprehensive hierarchical controlled vocabulary for human disease representation.Open source ontology for integration of biomedical data associated with human disease. Disease Ontology database represents comprehensive knowledge base of inherited, developmental and acquired human diseases.
Proper citation: Human Disease Ontology (RRID:SCR_000476) Copy
http://code.google.com/p/rna-star/
Software performing alignment of high-throughput RNA-seq data. Aligns RNA-seq reads to reference genome using uncompressed suffix arrays.
Proper citation: STAR (RRID:SCR_004463) Copy
http://compbio.cs.brown.edu/projects/gasv/
Software tool combining both paired read and read depth signals into probabilistic model which can analyze multiple alignments of reads. Used to find structural variation in both normal and cancer genomes using data from variety of next-generation sequencing platforms. Used to predict structural variants directly from aligned reads in SAM/BAM format.Combines read depth information along with discordant paired read mappings into single probabilistic model two common signals of structural variation. When multiple alignments of read are given, GASVPro utilizes Markov Chain Monte Carlo procedure to sample over the space of possible alignments.
Proper citation: GASVPro (RRID:SCR_005259) Copy
http://bioportal.bioontology.org/annotator
A Web service that annotates textual metadata (e.g. journal abstract) with relevant ontology concepts. NCBO uses this Web service to annotate resources in the NCBO Resource Index. They also provide this Web service as a stand-alone service for users. This Web service can be accessed through BioPortal or used directly in your software. Currently, the annotation workflow is based on syntactic concept recognition (using concept names and synonyms) and on a set of semantic expansion algorithms that leverage the semantics in ontologies (e.g., is_a relations). Their service methodology leverages ontologies to create annotations of raw text and returns them using semantic web standards.
Proper citation: NCBO Annotator (RRID:SCR_005329) Copy
http://bowtie-bio.sourceforge.net/index.shtml
Software ultrafast memory efficient tool for aligning sequencing reads. Bowtie is short read aligner.
Proper citation: Bowtie (RRID:SCR_005476) Copy
http://rarediseases.info.nih.gov/GARD/Default.aspx
Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.
Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy
http://interactome.baderlab.org/
Project portal for the Human Reference Protein Interactome Project, which aims generate a first reference map of the human protein-protein interactome network by identifying binary protein-protein interactions (PPIs). It achieves this by systematically interrogating all pairwise combinations of predicted human protein-coding genes using proteome-scale technologies.
Proper citation: Human Reference Protein Interactome Project (RRID:SCR_015670) Copy
https://github.com/hahnlab/CAFExp
Software tool for computational analysis of gene family evolution. Used for statistical analysis of evolution gene family sizes. Models evolution of gene family sizes over phylogeny.
Proper citation: Computational Analysis of gene Family Evolution (RRID:SCR_018924) Copy
https://github.com/broadinstitute/Drop-seq
Software Java tools for analyzing Drop-seq data. Used to analyze gene expression from thousands of individual cells simultaneously. Analyzes mRNA transcripts while remembering origin cell transcript.
Proper citation: Drop-seq tools (RRID:SCR_018142) Copy
https://github.com/sreeramkannan/Shannon
Software tool for de novo transcriptome assembly from RNA-Seq data.
Proper citation: Shannon (RRID:SCR_017037) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.