Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ncbi.nlm.nih.gov/HTGS/
Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.
Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy
Bioinformatics platform for storing, organizing, processing, and sharing genomic and other biomedical big data. Designed to make it easier for bioinformaticians to develop analyses, developers to create genomic web applications and IT administers to manage large-scale compute and storage genomic resources. Designed to run on top of cloud operating systems such as Amazon Web Services and OpenStack. Currently, there are implementations that work on AWS and Xen+Debian/Ubuntu. Functionally, Arvados has two major sets of capabilities: (a) data management and (b) compute management.
Proper citation: Arvados (RRID:SCR_002223) Copy
Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.
Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy
Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.
Proper citation: SAMTOOLS (RRID:SCR_002105) Copy
Web service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The repository allows you to explore datasets from numerous genotype experiments, supplied by a range of data providers. The EGA''s role is to provide secure access to the data that otherwise could not be distributed to the research community. The EGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the EGA project. As an example, only members of the EGA team are allowed to process data in a secure computing facility. Once processed, all data are encrypted for dissemination and the encryption keys are delivered offline. The EGA also supports data access only for the consortium members prior to publication.
Proper citation: European Genome phenome Archive (RRID:SCR_004944) Copy
http://glioblastoma.alleninstitute.org/
Platform for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels that includes two interactive databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities: * The open public image database, here, providing in situ hybridization data mapping gene expression across the anatomic structures inherent in glioblastoma, as well as associated histological data suitable for neuropathological examination * A companion database (Ivy GAP Clinical and Genomic Database) offering detailed clinical, genomic, and expression array data sets that are designed to elucidate the pathways involved in glioblastoma development and progression. This database requires registration for access. The hope is that researchers all over the world will mine these data and identify trends, correlations, and interesting leads for further studies with significant translational and clinical outcomes. The Ivy Glioblastoma Atlas Project is a collaborative partnership between the Ben and Catherine Ivy Foundation, the Allen Institute for Brain Science and the Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment.
Proper citation: Ivy Glioblastoma Atlas Project (RRID:SCR_005044) Copy
http://bejerano.stanford.edu/prism/public/html/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy
Tool for identification and analysis of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. It may identify the unmethylated and methylated regions for a single sample, the conserved and differential methylation regions with different methylation patterns for paired or multiple samples. It includes four main modules as follows: # Normalization of the sequencing reads of cytosines following guanines; # Identification of the unmethylated (methylated) regions using hotspot extension algorithm; # Identification of conservatively and differentially methylated regionsby combining the combinatorial algorithm for determination of potentially functional regions with the algorithm of analysis of variance (ANOVA) for assess the statistical significance of differentially methylated regions; # Extraction of sequence features and visualization of these potentially functional regions.
Proper citation: CpG MPs (RRID:SCR_005441) Copy
http://www.garban.org/garban/home.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool
Proper citation: GARBAN (RRID:SCR_005778) Copy
http://corneliu.henegar.info/FunCluster.htm
FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FunCluster (RRID:SCR_005774) Copy
http://great.stanford.edu/public/html/splash.php
Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool
Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy
Ratings or validation data are available for this resource
Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.
Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/
A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.
Proper citation: GeneVito (RRID:SCR_006211) Copy
http://www.cdc.gov/genomics/default.htm
The Office of Public Health Genomics (OPHG) aims to integrate genomics into public health research, policy, and programs. Doing so could improve interventions designed to prevent and control the country''s leading chronic, infectious, environmental, and occupational diseases. OPHG''s efforts focus on conducting population-based genomic research, assessing the role of family health history in disease risk and prevention, supporting a systematic process for evaluating genetic tests, translating genomics into public health research and programs, and strengthening capacity for public health genomics in disease prevention programs. Goals: To improve public health interventions of diseases of major public health importance, including chronic, infectious, environmental, and occupational diseases, through six major initiatives: * Evaluation of Genomic Applications in Practice and Prevention (EGAPP), * Human Genome Epidemiology Network (HuGENet), * NHANES Collaborative Genomics Project, * Family History Public Health Initiative, * Genomics Translation Research and Programs, and, * Genomic Applications in Practice and Prevention Network (GAPPNet).
Proper citation: Public Health Genomics (RRID:SCR_006462) Copy
http://bioconductor.org/packages/bioc/html/GeneAnswers.html
GeneAnswers provide an integrated tool for given genes biological or medical interpretation. It includes statistical test of given genes and specified categories. Microarray techniques have been widely employed in genomic scale studies for more than one decade. The standard analysis of microarray data is to filter out a group of genes from thousands of probes by certain statistical criteria. These genes are usually called significantly differentially expressed genes. Recently, next generation sequencing (NGS) is gradually adopted to explore gene transcription, methylation, etc. Also a gene list can be obtained by NGS preliminary data analysis. However, this type of information is not enough to understand the potential linkage between identified genes and interested functions. The integrated functional and pathway analysis with gene expression data would be very helpful for researchers to interpret the relationship between the identified genes and proposed biological or medical functions and pathways. The GeneAnswers package provides an integrated solution for a group of genes and specified categories (biological or medical functions, such as Gene Ontology, Disease Ontology, KEGG, etc) to reveal the potential relationship between them by means of statistical methods, and make user-friendly network visualization to interpret the results. Besides the package has a function to combine gene expression profile and category analysis together by outputting concept-gene cross tables, keywords query on NCBI Entrez Gene and application of human based Disease ontology analysis of given genes from other species can help people to understand or discover potential connection between genes and functions. Sponsors: This project was supported in part by Award Number UL1RR025741 from the National Center for Research Resources.
Proper citation: GeneAnswers (RRID:SCR_006498) Copy
It facilitates the search for and dissemination of mass spectra from biologically active metabolites quantified using Gas chromatography (GC) coupled to mass spectrometry (MS). Use the Search Page to search for a compound of your interest, using the name, mass, formula, InChI etc. as query input. Additionally, a Library Search service enables the search of user submitted mass spectra within the GMD. In parallel to the library search, a prediction of chemical sub-groups is performed. This approach has reached beta level and a publication is currently under review. Using several sub-group specific Decision Trees (DTs), mass spectra are classified with respect to the presence of the chemical moieties within the linked (unknown) compound. Prediction of functional groups (ms analysis) facilitates the search of metabolites within the GMD by means of user submitted GC-MS spectra consisting of retention index (n-alkanes, if vailable) and mass intensities ratios. In addition, a functional group prediction will help to characterize those metabolites without available reference mass spectra included in the GMD so far. Instead, the unknown metabolite is characterized by predicted presence or absence of functional groups. For power users this functionality presented here is exposed as soap based web services. Functional group prediction of compounds by means of GC-EI-MS spectra using Microsoft analysis service decision trees All currently available trained decision trees and sub-structure predictions provided by the GMD interface. Table describes the functional group, optional use of an RI system, record date of the trained decision tree, number of MSTs with proportion of MSTs linked to metabolites with the functional group present for each tree. Average and standard deviation of the 50-fold CV error, namely the ratio false over correctly sorted MSTs in the trained DT, are listed. The GMD website offers a range of mass spectral reference libraries to academic users which can be downloaded free of charge in various electronic formats. The libraries are constituted by base peak normalized consensus spectra of single analytes and contain masses in the range 70 to 600 amu, while the ubiquitous mass fragments typically generated from compounds carrying a trimethylsilyl-moiety, namely the fragments at m/z 73, 74, 75, 147, 148, and 149, were excluded.
Proper citation: GMD (RRID:SCR_006625) Copy
https://www.fludb.org/brc/home.spg?decorator=influenza
The Influenza Research Database (IRD) serves as a public repository and analysis platform for flu sequence, experiment, surveillance and related data.
Proper citation: Influenza Research Database (IRD) (RRID:SCR_006641) Copy
http://sourceforge.net/projects/gmato/files/?source=navbar
A software tool used for simple sequence repeats (SSR) or microsatellite characterization. It also facilitates SSR marker design on a genomic scale, microsatellite mining at any length, and comprehensive statistical analysis for DNA sequences in any genome at any size. Analysis parameters are customizable.
Proper citation: GMATo (RRID:SCR_000165) Copy
A software application and database viewing system for genomic research, more specifically formulti-genome comparison and pattern discovery via genome self-comparison. Data are available for a range of species including Human Chr3, Human Chr12, Sea Urchin, Tribolium, and cow. The Genboree Discovery System is the largest software system developed at the bioinformatics laboratory at Baylor in close collaboration with the Human Genome Sequencing Center. Genboree is a turnkey software system for genomic research. Genboree is hosted on the Internet and, as of early 2007, the number of registered users exceeds 600. While it can be configured to support almost any genome-centric discovery process, a number of configurations already exist for specific applications. Current focus is on enabling studies of genome variation, including array CGH studies, PCR-based resequencing, genome resequencing using comparative sequence assembly, genome remapping using paired-end tags and sequences, genome analysis and annotation, multi-genome comparison and pattern discovery via genome self-comparison. Genboree database and visualization settings, tools, and user roles are configurable to fit the needs of specific discovery processes. Private permanent project-specific databases can be accessed in a controlled way by collaborators via the Internet. Project-specific data is integrated with relevant data from public sources such as genome browsers and genomic databases. Data processing tools are integrated using a plug-in model. Genboree is extensible via flexible data-exchange formats to accommodate project specific tools and processing steps. Our Positional Hashing method, implemented in the Pash program, enables extremely fast and accurate sequence comparison and pattern discovery by employing low-level parallelism. Pash enables fast and sensitive detection of orthologous regions across mammalian genomes, and fast anchoring of hundreds of millions of short sequences produced by next-generation sequencing technologies. We are further developing the Pash program and employing it in the context of various discovery pipelines. Our laboratory participates in the pilot stage of the TCGA (The Cancer Genome Atlas) project. We aim to develop comprehensive, rapid, and economical methods for detecting recurrent chromosomal aberrations in cancer using next-generation sequencing technologies. The methods will allow detection of recurrent chromosomal aberrations in hundreds of small (
Proper citation: Genboree Discovery System (RRID:SCR_000747) Copy
http://franklin.imgen.bcm.tmc.edu/
The mission of the Baylor College of Medicine - Shaw Laboratory is to apply methods of statistics and bioinformatics to the analysis of large scale genomic data. Our vision is data integration to reveal the underlying connections between genes and processes in order to cure disease and improve healthcare.
Proper citation: Baylor College of Medicine - Shaw Laboratory (RRID:SCR_000604) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.