Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ebi.ac.uk/ontology-lookup/
Interactive and programmatic interfaces to query, browse and navigate an increasing number of biomedical ontologies and controlled vocabularies. It provides a web service interface to query multiple ontologies from a single location with a unified output format. It can integrate any ontology available in the Open Biomedical Ontology (OBO) format. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A weekly MySQL database export file can be downloaded from the EBI public FTP directory.
Proper citation: Ontology Lookup Service (RRID:SCR_006596) Copy
http://sourceforge.net/p/fastsemsim/home/Home/
A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FastSemSim (RRID:SCR_006919) Copy
http://autismkb.cbi.pku.edu.cn/
Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.
Proper citation: AutismKB (RRID:SCR_006937) Copy
canSAR is an integrated database that brings together biological, chemical, pharmacological (and eventually clinical) data. Its goal is to integrate this data and make it accessible to cancer research scientists from multiple disciplines, in order to help with hypothesis generation in cancer research and support translational research. This cancer research and drug discovery resource was developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.
Proper citation: canSAR (RRID:SCR_006794) Copy
http://geneontology.org/docs/tools-overview/
Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.
Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy
https://factory.euromov.eu/sml/index.php
Open source Java library dedicated to semantic measures computation and analysis. Tools based on the SML are also provided through the SML-Toolkit, a command line software giving access to some of the functionalities of the library. The SML and the toolkit can be used to compute semantic similarity and semantic relatedness between semantic elements (e.g. concepts, terms) or entities semantically characterized (e.g. entities defined in a semantic graph, documents annotated by concepts defined in an ontology).
Proper citation: Semantic Measures Library (RRID:SCR_001383) Copy
Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.
Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy
http://amigo.geneontology.org/
Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.
Proper citation: AmiGO (RRID:SCR_002143) Copy
http://genespeed.ccf.org/home/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.
Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy
A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.
Proper citation: GreenPhylDB (RRID:SCR_002834) Copy
http://funsimmat.bioinf.mpi-inf.mpg.de
FunSimMat is a comprehensive resource of semantic and functional similarity values. It allows ranking disease candidate proteins for OMIM diseases and searching for functional similarity values for proteins (extracted from UniProt), and protein families (Pfam, SMART). FunSimMat provides several different semantic and functional similarity measures for each protein pair using the Gene Ontology annotation from UniProtKB and the Gene Ontology Annotation project at EBI (GOA). There are several search options available: Disease candidate prioritization: * Rank candidate proteins using any OMIM disease entry * Compare a list of proteins to any OMIM disease entry * Compare all human proteins to any OMIM disease entry Functional similarity: * Compare one protein / protein family to a list of proteins / protein families * Compare a list of GO terms to a list of proteins / protein families Semantic similarity: * For a list of GO terms, FunSimMat performs an all-against-all comparison and displays the semantic similarity values. FunSimMat provides an XML-RPC interface for performing automatic queries and processing of the results as well as a RestLike Interface. Platform: Online tool
Proper citation: FunSimMat (RRID:SCR_002729) Copy
A wiki where users of the Gene Ontology can contribute and view notes about how specific GO terms are used. GONUTS can also be used as a GO term browser, or to search for GO annotations of specific genes from included organisms. The rationale for this wiki is based on helping new users of the gene ontology understand and use it. The GONUTS wiki is not an official product of the the Gene Ontology consortium. The GO consortium has a public wiki at their website, http://wiki.geneontology.org/. Maintaining the ontology involves many decisions to carefully choose terms and relationships. These decisions are currently made at GO meetings and via online discussion using the GO mailing lists and the Sourceforge curator request tracker. However, it is difficult for someone starting to use GO to understand these decisions. Some insight can be obtained by mining the tracker, the listservs and the minutes of GO meetings, but this is difficult, as these discussions are often dispersed and sometimes don't contain the GO accessions in the relevant messages. Wikis provide a way to create collaboratively written documentation for each GO term to explain how it should be used, how to satisfy the true path requirement, and whether an annotation should be placed at a different level. In addition, the wiki pages provide a discussion space, where users can post questions and discuss possible changes to the ontology. GONUTS is currently set up so anyone can view or search, but only registered users can edit or add pages. Currently registered users can create new users, and we are working to add at least one registered user for each participating database (So far we have registered users at EcoliHub, EcoCyc, GOA, BeeBase, SGD, dictyBase, FlyBase, WormBase, TAIR, Rat Genome Database, ZFIN, MGI, UCL and AgBase...
Proper citation: GONUTS (RRID:SCR_000653) Copy
Portal devoted to aging relevant scientific data and resources.
Proper citation: Aging Portal (RRID:SCR_000496) Copy
http://www.ncbi.nlm.nih.gov/biosystems/
Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.
Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy
A web-based browser for Gene Ontology terms and annotations, which is provided by the UniProtKB-GOA group at the EBI. It is able to offer a range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation. The software for QuickGO is freely available under the Apache 2 license. QuickGO can supply GO term information and GO annotation data via REST web services.
Proper citation: QuickGO (RRID:SCR_004608) Copy
Project that developed an open access discovery platform, called Open Pharmacological Space (OPS), via a semantic web approach, integrating pharmacological data from a variety of information resources and tools and services to question this integrated data to support pharmacological research. The project is based upon the assimilation of data already stored as triples, in the form subject-predicate-object. The software and data are available for download and local installation, under an open source and open access model. Tools and services are provided to query and visualize this data, and a sustainability plan will be in place, continuing the operation of the Open PHACTS Discovery Platform after the project funding ends. Throughout the project, a series of recommendations will be developed in conjunction with the community, building on open standards, to ensure wide applicability of the approaches used for integration of data.
Proper citation: Open PHACTS (RRID:SCR_005050) Copy
http://services.nbic.nl/copub/portal/
Text mining tool that detects co-occuring biomedical concepts in abstracts from the MedLine literature database. It allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs.
Proper citation: CoPub (RRID:SCR_005327) Copy
The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.
Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy
http://go.princeton.edu/cgi-bin/GOTermMapper
The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.