Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005665

    This resource has 10+ mentions.

http://agbase.msstate.edu/cgi-bin/tools/goslimviewer_select.pl

Service to summarize the GO function associated with a data set using prepared GO Slim sets. The input is a tab separated list of gene product IDs and GO IDs.

Proper citation: GOSlimViewer (RRID:SCR_005665) Copy   


  • RRID:SCR_005821

    This resource has 1+ mentions.

http://www.ebi.ac.uk/expressionprofiler/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The EP:GO browser is built into EBI's Expression Profiler, a set of tools for clustering, analysis and visualization of gene expression and other genomic data. With it, you can search for GO terms and identify gene associations for a node, with or without associated subnodes, for the organism of your choice.

Proper citation: Expression Profiler (RRID:SCR_005821) Copy   


  • RRID:SCR_005822

    This resource has 1+ mentions.

http://www.snubi.org/software/GOChase/

GOChase is a set of web-based utilities to detect and correct the errors in GO-based annotations. # GOChase-History resolves the whole modification history of GO IDs. # GOChase-Correct highlights merged GO IDs and redirects to the correct primary term into which the secondary ID was merged. For obsolete GO terms, the nearest non-discarded parent term is recommended by GOChase. This function may be used by GO browsers such as AmiGO and QuickGO to fix broken hyperlinks. # A whole database (such as LocusLink) as a flat file can be loaded into GOChase, reporting the annotation errors and GOChase corrections. # When one inputs a GO ID, GOChase will resolve all gene products annotated with the GO ID across all the major databases. Platform: Online tool

Proper citation: GOChase (RRID:SCR_005822) Copy   


http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl

The GO Slim Mapper (aka GO Term Mapper) maps the specific, granular GO terms used to annotate a list of budding yeast gene products to corresponding more general parent GO slim terms. Uses the SGD GO Slim sets. Three GO Slim sets are available at SGD: * Macromolecular complex terms: protein complex terms from the Cellular Component ontology * Yeast GO-Slim: GO terms that represent the major Biological Processes, Molecular Functions, and Cellular Components in S. cerevisiae * Generic GO-Slim: broad, high level GO terms from the Biological Process and Cellular Component ontologies selected and maintained by the Gene Ontology Consortium (GOC) Platform: Online tool

Proper citation: SGD Gene Ontology Slim Mapper (RRID:SCR_005784) Copy   


  • RRID:SCR_005813

    This resource has 1+ mentions.

http://lussierlab.org/GO-Module/GOModule.cgi

GO-Module provides an interface to reduce the dimensionality of GO enrichment results and produce interpretable biomodules of significant GO terms organized by hierarchical knowledge that contain only true positive results. Users can download a text file of GO terms annotated with their significance and identified biomodules, a network visualization of resultant GO IDs or terms in PDF format, and view results in an online table. Platform: Online tool

Proper citation: GO-Module (RRID:SCR_005813) Copy   


  • RRID:SCR_006385

    This resource has 1+ mentions.

http://gtlinker.cnb.csic.es/

Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.

Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy   


  • RRID:SCR_005684

    This resource has 10+ mentions.

http://www.agbase.msstate.edu/cgi-bin/tools/GOanna.cgi

GOanna is used to find annotations for proteins using a similarity search. The input can be a list of IDs or it can be a list of sequences in FASTA format. GOanna will retrieve the sequences if necessary and conduct the specified BLAST search against a user-specified database of GO annotated proteins. The resulting file contains GO annotations of the top BLAST hits. The sequence alignments are also provided so the user can use these to access the quality of the match. Platform: Online tool

Proper citation: GOanna (RRID:SCR_005684) Copy   


  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   


  • RRID:SCR_006406

    This resource has 500+ mentions.

http://bioinformatics.intec.ugent.be/magic/

Web based interface for exploring and analyzing a comprehensive maize-specific cross-platform expression compendium. This compendium was constructed by collecting, homogenizing and formally annotating publicly available microarrays from Gene Expression Omnibus (GEO), and ArrayExpress.

Proper citation: Magic (RRID:SCR_006406) Copy   


http://xldb.fc.ul.pt/biotools/rebil/ssm/

FuSSiMeG is being discontinued, may not be working properly. Please use our new tool ProteinOn. Functional Semantic Similarity Measure between Gene Products (FuSSiMeG) provides a functional similarity measure between two proteins using the semantic similarity between the GO terms annotated with the proteins. Platform: Online tool

Proper citation: FuSSiMeG: Functional Semantic Similarity Measure between Gene-Products (RRID:SCR_005738) Copy   


  • RRID:SCR_008870

    This resource has 100+ mentions.

http://go.princeton.edu/cgi-bin/GOTermFinder

The Generic GO Term Finder finds the significant GO terms shared among a list of genes from an organism, displaying the results in a table and as a graph (showing the terms and their ancestry). The user may optionally provide background information or a custom gene association file or filter evidence codes. This tool is capable of batch processing multiple queries at once. GO::TermFinder comprises a set of object-oriented Perl modules GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script. This implementation, developed at the Lewis-Sigler Institute at Princeton, depends on the GO-TermFinder software written by Gavin Sherlock and Shuai Weng at Stanford University and the GO:View module written by Shuai Weng. It is made publicly available through the GMOD project. The full source code and documentation for GO:TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Finder (RRID:SCR_008870) Copy   


http://apid.dep.usal.es

APID Interactomes (Agile Protein Interactomes DataServer) provides information on the protein interactomes of numerous organisms, based on the integration of known experimentally validated protein-protein physical interactions (PPIs). The interactome data includes a report on quality levels and coverage over the proteomes for each organism included. APID integrates PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. This collection references protein interactors, through a UniProt identifier.

Proper citation: Agile Protein Interactomes DataServer (RRID:SCR_008871) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


http://meme.nbcr.net/meme/cgi-bin/gomo.cgi

Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=renal

An integrated resource for information on genes, QTLs and strains associated with a variety of kidney and renal system conditions such as Renal Hypertension, Polycystic Kidney Disease and Renal Insufficiency, as well as Kidney Neoplasms.

Proper citation: Renal Disease Portal (RRID:SCR_009030) Copy   


http://vortex.cs.wayne.edu/projects.htm#OE2GO

Onto-Express is a web-based tool in the Onto-Tools suite that performs automated function profiling for a list of differentially expressed genes. However, Onto-Express does not support functional profiling for the organisms that do not have annotations in public domain, or use of custom (i.e. user-defined) ontologies. This limitation is also true for most of the other existing tools for functional profiling, which means that researchers working with uncommon organisms and/or new annotations or ontologies may be forced to construct such profiles manually. Onto-Express To Go (OE2GO) is a new tool added to the Onto-Tools ensemble to address these issues. OE2GO is built on top of OE to leverage its existing functionality. In OE2GO, the users now have an option to use either the Onto-Tools database as a source of functional annotations or provide their own annotations in a separate file. Currently, OE2GO supports annotation file in the Gene Ontology format. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Onto-Express To Go (OE2GO) (RRID:SCR_008854) Copy   


  • RRID:SCR_010668

    This resource has 50+ mentions.

http://uberon.org

An integrated cross-species anatomy ontology representing a variety of entities classified according to traditional anatomical criteria such as structure, function and developmental lineage. The ontology includes comprehensive relationships to taxon-specific anatomical ontologies, allowing integration of functional, phenotype and expression data. Uberon consists of over 10000 classes (March 2014) representing structures that are shared across a variety of metazoans. The majority of these classes are chordate specific, and there is large bias towards model organisms and human.

Proper citation: UBERON (RRID:SCR_010668) Copy   


http://pathways.mcdb.ucla.edu/algal/

Tools to search gene lists for functional term enrichment as well as to dynamically visualize proteins onto pathway maps. Additionally, integrated expression data may be used to discover similarly expressed genes based on a starting gene of interest.

Proper citation: Algal Functional Annotation Tool (RRID:SCR_012034) Copy   


  • RRID:SCR_003357

    This resource has 1+ mentions.

http://mouseNET.princeton.edu

A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.

Proper citation: MouseNET (RRID:SCR_003357) Copy   


http://genespeed.ccf.org/home/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.

Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X